Temple University Antibiotics Discussion Paper

  • Each student should post 4 key points (ONE POSTING, in summary form, 1-2 sentences each point), one each from the weeks of the course  These key points should be organized with the heading of “Week 11” through “Week 14” in your post. Succinct and informative, please! The summary statements should provide a framework for review and study for your exam. Hopefully, as a group, we can compile a complete and well organized study sheet for the first half of the class! Be sure to come back and re-read the postings and responses before taking your exam!
  • An#bio#cs  
     
    Lark  J.  Perez  
     
    50S  Inhibitors  -­‐  Chloramphenicol  
    Protein  Synthesis  Inhibitors  
    Nature  Rev  Microbiol.  2005  3(11):870-­‐881  
    Protein  Synthesis  Inhibitors  
    Nature  Rev  Microbiol.  2005  3(11):870-­‐881  
    212 Cell 139, October 2, 2009 ©2009 Elsevier Inc. DOI 10.1016/j.cell.2009.08.009
    SnapShot: Antibiotic Inhibition of Protein
    Synthesis II
    Daniel Sohmen,1 Joerg M. Harms,2 Frank Schlünzen,3 and Daniel N. Wilson1,4
    1
    University of Munich, Germany; 2MPSD, University of Hamburg, Germany; 3DESY, Hamburg, Germany; 4CiPS-M, Munich, Germany
    See online version for legend and references.
    Part I appeared in the September 18 issue.
    50S  Ribosome  PTC  Inhibitors  
    Nature  Rev  Microbiol.  2005  3(11):870-­‐881  
    Chloramphenicol  
     
     
    Thiamphenicol  
    Chloramphenicol  
    Florfenicol  
    Chloramphenicol  –  Mechanism  of  Ac#on  
    Chloramphenicol  –  Mechanism  of  Ac#on  
    Chloramphenicol  
    Chloramphenicol  –  Mechanism  of  Ac#on  
    Chloramphenicol  
    Nature  2001  413,  814-­‐821  
    Chloramphenicol  –  Mechanism  of  Ac#on  
    YouTube:   h=ps://www.youtube.com/watch?v=0VINqUF-­‐r5I    
    Chloramphenicol  –  Acquired  Resistance  
    1)  Reduced  membrane  permeability  (wide-­‐spread  and  generally  low  level  resistance)  
     
    2)  Binding  site  mutaTon  (rare,  not  clinically  significant)  
     
    3)  Drug  inacTvaTon  (significant  or  complete  drug  resistance  mediated  by    
    chloramphenicol  acetyltransferase)      
    Chloramphenicol  –  Acquired  Resistance  
    1)  Reduced  membrane  permeability  (wide-­‐spread  and  generally  low  level  resistance)  
     
    2)  Binding  site  mutaTon  (rare,  not  clinically  significant)  
     
    3)  Drug  inacTvaTon  (significant  or  complete  drug  resistance  mediated  by    
    chloramphenicol  acetyltransferase)      
    CH 3
    OH OH
    Cl
    HN
    O2N
    OH O
    Chloramphenicol
    Acetyltransferase
    Cl
    Cl
    O
    O
    S
    CoA
    HS
    O
    CoA
    HN
    O2N
    Cl
    non-enzymatic
    O
    HO CH 3
    O
    O
    Cl
    O
    H 3C
    O
    O
    O
    O
    CH 3
    Cl
    O2N
    HN
    Cl
    O
    H 3C
    Chloramphenicol
    Acetyltransferase
    HS
    O2N
    S
    O
    CoA
    HN
    HN
    non-enzymatic
    Cl
    O
    Cl
    O
    OH
    Cl
    O
    CoA
    O2N
    An#bio#cs  
     
    Lark  J.  Perez  
     
    50S  Inhibitors  -­‐  Macrolides  
    Macrolides  –  Introduc#on  
    Macrolides  -­‐  Classes  
    Universally  macrocyclic  lactones,  typically  more  effecTve  against  gram  posiTve  bacteria.    
    Erythromycin  (14-­‐member  ring)  
    Azithromycin  (15-­‐member  ring)  
    Clarithromycin  (14-­‐member  ring)  
    Tylosin  (16-­‐member  ring)  
    Macrolides  –  Mechanism  of  Ac#on  
    Macrolides  –  Mechanism  of  Ac#on  
    Macrolides  –  Mechanism  of  Ac#on  
    YouTube:   h=ps://www.youtube.com/watch?v=oC21vLFtsjo    
    Macrolides  –  Mechanism  of  Ac#on  
    Molecular Cell, 2002,10 (1), 117–128.
    Macrolides  –  Mechanism  of  Ac#on  
    Macrolides  –  Mechanism  of  Ac#on  
    Proceedings  of  the  Na;onal  Academy  of  Sciences,  USA  2014,  111  (27),  9804-­‐9809.    
    Macrolides  –  Mechanism  of  Ac#on  
    Macrolides  –  Mechanism  of  Ac#on  Details  
    Cell, 2012, 151, 469-471.
    Molecular Cell, 2002,10 (1), 117–128.
    Macrolides  –  Resistance  
    Gram-­‐negaTve  inherently  have  resistance  (low  drug  permeability),  clinically  significant  
    resistance  largely  from  altered  drug  binding  site.  
    Molecular Cell, 2002,10 (1), 117–128.
    50S  Inhibitors  -­‐  Recent  Innova#ons    
    Erythromycin  red  
    Nacent  pepTde  chain  blue  
     
    PDB  3OFO-­‐R  
    Chloroamphenicol  (red,  2  sites)  
    Erythromycin  overlaid  in  yellow  
     
    PDB’s  3OFA-­‐D,  1NJI  and  3OFO-­‐R  
    Erythromycin-­‐Chloramphenicol  Conjugate  
    Inhibitors  of  Nucleic  Acid  Processes  
    and  Metabolism:  
    DNA/RNA  Metabolism  Background  
     
    caputo@rowan.edu  
    DNA  Synthesis  Inhibitors  
    • Prevent  the  replicaEon  of  DNA,  thereby  
    blocking  cell  division/replicaEon  
     
    Nucleic  Acid  Inhibitors  
    • Prevent  the  synthesis  of  DNA  nucleoEdes,  
    prevenEng  DNA  replicaEon  
    RNA  Synthesis  Inhibitors  
    • Block  RNA  polymerases  (transcripEon  of  
    genes)  
    • Four  classes  of  RNAPol  inhibitors  
    – rifamycins    -­‐  blocks  RNA  extension  
    – sorangicin    -­‐  blocks  RNA  extension  
    – streptolydigin    -­‐  blocks  RNAPol  catalyEc  recycling  
    – myxopyronin.    -­‐  Blocks  RNAPol  interacEon  with  
    DNA  
    Rifamycin  
    Streptolydigin  
    myxopyronin    
    DNA  Background  
    • Source  of  geneEc  informaEon  
    • “long  term”  storage  of  informaEon  in  genes  
    • DNA  is  a  biopolymer  of  nucleoEdes  
    DNA  Synthesis  -­‐  Background  
    • Required  for  duplicaEon  of  cells  
    • Need  to  pass  on  a  copy  of  DNA  to  each  
    “daughter”  cell  
    • MulEple  proteins  involved  in  duplicaEon  
    process  
    • Bind  DNA  
    • Unwind  DNA  
    • Separate  DNA  
    • Prime  DNA  
    • Synthesize  DNA  
    Fig. 7-10
    Semiconservative
    replication  
    Parental strand  
    New strand  
    Table 7-2
    Table 7-2
    Fig. 7-13
    RNA primer  
    Lagging strand  
    Primase  
    Single-strand
    binding protein  
    Helicase  
    Free 3ʹ′-OH  
    DNA polymerase III  
    Leading strand  
    RNA primer  
    Fig. 7-17
    Origin (DnaA
    binding site)  
    Replication
    forks  
    Lagging  
    Leading  
    Leading  
    Lagging  
    Direction  
    Direction  
    Origin  
    Replication
    fork  
    Table 7-2
    Fig. 7-15
    DNA polymerase III  
    3ʹ′-OH  
    RNA primer  
    5ʹ′-P  
    DNA polymerase I  
    3ʹ′-OH 5ʹ′-P  
    DNA ligase  
    Table 7-2
    Fig. 7-16
    Origin of
    replication  
    Replication
    forks  
    Newly
    synthesized
    DNA  
    Theta
    structure  
    Fig. 7-19
    Newly synthesized strand  
    DNA polymerase III  
    RNA primer  
    DNA helicase  
    Leading strand template  
    DNA gyrase  
    Tau  
    Parental DNA  
    RNA primer  
    DNA polymerase III  
    DNA primase  
    Newly synthesized strand  
    Lagging
    strand
    template  
    Single-strand
    DNA-binding
    proteins  
    Table 7-2
    Fluoroquinolones  
    RNA  Synthesis  
    • Varies  significantly  from  eukaryoEc  cells  
    • Consists  of  two  subunits  
    – RNA  Polymerase  (RNA  extension)    
    – Sigma  factor  (promoter  binding)  
    • The  complete  funcEonal  complex  consists  of  6  
    proteins:  β, β’, αΙ, αΙΙ, ω,σ
    • Sigma  factors  vary  based  on  which  promoter  
    the  polymerase  is  binding  to  
    Fig. 7-21
    RNA polymerase
    (core enzyme)  
    Promoter region  
    Sigma factor  
    Gene(s) to be transcribed
    (light green strand)  
    Sigma recognizes
    promoter and
    initiation site  
    Sigma  
    RNA  
    Transcription begins; sigma
    released. RNA chain growth
    continues to termination site  
    Termination site
    reached; chain
    growth stops  
    Release of
    polymerase
    and RNA  
    DNA
    Short transcripts  
    Longer transcripts  
    Fig. 7-22
    RNA polymerase
    (core enzyme)  
    Transcription  
    Sigma  
    mRNA start  
    1.
    2.
    3.
    4.
    5.
    6.
    –35 sequence  
    Pribnow box  
    Consensus  
    Promoter sequence  
    Table 7-3
    Fig. 9-7
    arg Promoter   arg Operator  
    argC  
    RNA
    polymerase  
    argB  
    argH  
    Transcription proceeds  
    Repressor  
    arg Promoter   arg Operator  
    RNA
    polymerase  
    argC  
    argB  
    argH  
    Corepressor
    Transcription blocked  
    (arginine)  
    Repressor  
    Fig. 9-8
    lac Promoter   lac Operator  
    lacZ  
    RNA
    polymerase  
    lacY  
    lacA  
    Transcription proceeds  
    Repressor  
    lac Promoter   lac Operator  
    lacZ  
    RNA
    polymerase  
    lacY  
    lacA  
    Transcription proceeds  
    Repressor  
    Inducer  
    Fig. 9-9
    Activator
    binding site   mal Promoter  
    malE  
    malF  
    malG  
    No transcription  
    RNA
    polymerase  
    Maltose activator protein  
    Activator
    binding site   mal Promoter  
    malE  
    RNA
    polymerase  
    Maltose activator protein  
    Inducer  
    malF  
    malG  
    Transcription proceeds  
    Fig. 9-10
    DNA  
    Protein  
    Fig. 9-11
    Activator
    binding site  
    Promoter  
    RNA
    polymerase   Transcription
    proceeds  
    Activator protein  
    Promoter  
    Activator protein  
    RNA
    polymerase   Transcription
    proceeds  
    Activator
    binding site  
    Differences  
    • There  are  significant  differences  between  
    prokaryoEc  and  eukaryoEc  polymerases  
    • ProkaryoEc  transcripts  contain  mulEple  gene  
    products  
    • EukaryoEc  polymerases  are  more  complex  
    References  















    PMID:  15718136  
    h^p://www.ncbi.nlm.nih.gov/books/NBK21261/  
    Journal  of  AnEmicrobial  Chemotherapy  (2005)  55,  518–522  doi:10.1093/jac/dki030  
    DOI:  10.1039/B418460B  (Paper)  Analyst,  2005,  130,  1032-­‐1037  
    h^p://www.microbiologybook.org/mayer/anEbiot.htm  
    doi:  10.1128/AAC.48.7.2610-­‐2616.2004  An#microb.  Agents  Chemother.  July  2004  vol.  48  no.  7  
    2610-­‐2616    
    Rcsb  pdbid  3TZF    
    DOI:10.2210/pdb2w9h/pdb    
    Rcsb  pdbid  2w9h  
    h^p://www.d.umn.edu/~jfitzake/Lectures/DMED/FolateB12/NucleoEdeBiochemistry.html  
    An#microb.  Agents  Chemother.  March  2004  vol.  48  no.  3  799-­‐803    
    Appl.  Environ.  Microbiol.  September  2013  vol.  79  no.  18  5550-­‐5558    
    Brock  –  biology  of  microorganisms  
    PMID:  19926275    
    PMID:  11313498  
    Inhibitors  of  Nucleic  Acid  Processes  
    and  Metabolism:  
    DNA  Synthesis  Inhibitors  
    caputo@rowan.edu  
    DNA  Synthesis  
    • Replica@on  of  DNA  is  required  for  cell  division  
    • Provides  necessary  gene@c  informa@on  for  all  
    cellular  processes  
    • Cells  cannot  survive  without  in-­‐tact  DNA  
    DNA  Synthesis  Inhibitors  
    • Prevent  the  replica@on  of  DNA,  thereby  
    blocking  cell  division/replica@on  
     
    Table 7-2
    Fluoroquinolones  
    Fluoroquinolones   Nalidixic  Acid  
    • Original  molecule,  nalidixic  acid,  
    isolated  as  a  side  product  from  
    the  synthesis  of  chloroquine  in  
    the  1960s  
    • Nalidixic  acid  is  primarily  
    bactericidal  
    • Later  deriva@ves  include  the  
    fluorinated  core  known  as  
    fluoroquinolone  
    DRUG  
    CAS  REGISTRY  
    NO  
    MOLECULAR  FORMULA   STRUCTURE  
    Ciprofloxacin  HCl  
    86393-­‐32-­‐0  
    C17-­‐H18-­‐F-­‐N3-­‐O3.Cl-­‐
    H.H2-­‐O  
    Gemifloxacin  
    175463-­‐14-­‐6  
    C18-­‐H20-­‐F-­‐N5-­‐O4  
    Levofloxacin  
    100986-­‐85-­‐4  
    C18-­‐H20-­‐F-­‐N3-­‐O4    
    Moxifloxacin  HCl  
    186826-­‐86-­‐8    
    C21-­‐H24-­‐F-­‐N3-­‐O4.Cl-­‐H  
    Norfloxacin  
    70458-­‐96-­‐7  
    C16-­‐H18-­‐F-­‐N3-­‐O3  
    Ofloxacin  
    82419-­‐36-­‐1  
    C18-­‐H20-­‐F-­‐N3-­‐O4    
    Synthesis  
    Solid-­‐Phase  Synthesis  
    Structural  Aspects  
    Mechanism  of  Ac@on  
    • Act  by  disrup@ng  DNA  synthesis  
    • Targets  are  DNA  gyrase  and  Topoisomerases  
    • Disrupt  the  progression  of  the  replica@on  fork  
    • Ac@on  can  be  bactericidal  or  bacteriosta@c,  
    depending  on  concentra@on  
    Resistance  
    • Two  iden@fied  mechanisms  of  resistance  
    • Muta@ons  in  parC  and  gyrA  reduce  efficacy  
    • Muta@ons  affec@ng  accumula@on  of  
    fluoroquinolones  have  also  been  iden@fied  
    (mul@drug  efflux  pumps)  
     
    References  

















    PMID:  15718136  
    hap://www.ncbi.nlm.nih.gov/books/NBK21261/  
    Journal  of  An@microbial  Chemotherapy  (2005)  55,  518–522  doi:10.1093/jac/dki030  
    DOI:  10.1039/B418460B  (Paper)  Analyst,  2005,  130,  1032-­‐1037  
    hap://www.microbiologybook.org/mayer/an@biot.htm  
    doi:  10.1128/AAC.48.7.2610-­‐2616.2004  An#microb.  Agents  Chemother.  July  2004  vol.  48  no.  7  
    2610-­‐2616    
    Rcsb  pdbid  3TZF    
    DOI:10.2210/pdb2w9h/pdb    
    Rcsb  pdbid  2w9h  
    hap://www.d.umn.edu/~jfitzake/Lectures/DMED/FolateB12/Nucleo@deBiochemistry.html  
    An#microb.  Agents  Chemother.  March  2004  vol.  48  no.  3  799-­‐803    
    Appl.  Environ.  Microbiol.  September  2013  vol.  79  no.  18  5550-­‐5558    
    PMC3250697  -­‐  Can  J  Infect  Dis.  1999  May-­‐Jun;  10(3):  207–238.    
    Clin  Infect  Dis.  2005  Jul  15;41  Suppl  2:S113-­‐9.  
    J.  An#microb.  Chemother.  (2000)  46  (suppl  3):  17-­‐24.    
    www.intechopen.com/download/pdf/38653  
    doi:10.1016/S0960-­‐894X(99)00326-­‐1  
    Inhibitors  of  Nucleic  Acid  Processes  
    and  Metabolism:  
    RNA  Synthesis  Inhibitors  
    caputo@rowan.edu  
    RNA  Synthesis  
    RNA  Synthesis  Inhibitors  
    • Block  RNA  polymerases  (transcripBon  of  
    genes)  
    • Four  classes  of  RNAPol  inhibitors  
    – rifamycins    -­‐  blocks  RNA  extension  
    – sorangicin    -­‐  blocks  RNA  extension  
    – streptolydigin    -­‐  blocks  RNAPol  catalyBc  recycling  
    – myxopyronin.    -­‐  Blocks  RNAPol  interacBon  with  
    DNA  
    Rifamycin  
    Streptolydigin  
    myxopyronin    
    Rifamycin  
    • Originally  isolated  from  the  bacterium    
    Amycolatopsis  rifamycinica    
     
    BiosyntheBc  Pathway  
    • MulBple  genes  involved  in  synthesis  
    • 10  step  synthesis  to  create  AHBA,  a  rifampin  
    precursor  
    Mechanism  of  AcBon  
    • Rif  binds  to  the  RNAPol  β  subunit  
    • Binds  near  the  DNA/RNA  interface  
    • Does  NOT  directly  bind  to  the  RNAPol  acBve  
    site  
    Complex  of  RNAPol  and  Rif  
    Three-­‐dimensional  structure  of  Taq  
    core  RNAP  in  complex  with  Rif,  
    generated  using  GRASP  (Nicholls  et  al.,  
    1991).  The  backbone  of  the  RNAP  
    structure  is  shown  as  tubes,  along  with  
    the  color  coded  transparent  molecular  
    surface  (β,  cyan;  β’,  pink;  ω,  white;  the  
    α  subunits  are  behind  the  RNAP  and  
    are  not  visible).  The  Mg2+  ion  chelated  
    at  the  acBve  site  is  shown  as  a  
    magenta  sphere.  The  Rif  is  shown  as  
    CPK  atoms  (carbon,  orange;  oxygen,  
    red;  nitrogen,  blue).  
    Cell.  2001  Mar  23;104(6):901-­‐12  
    Binding  Site  InteracBons  
    • SchemaBc  drawing  of  RNAP  β  
    subunit  interacBons  with  Rif,  
    modified  from  LIGPLOT  (Wallace  et  
    al.,  1995).  
    • Residues  forming  van  der  Waals  
    interacBons  are  indicated,  those  
    parBcipaBng  in  hydrogen  bonds  
    are  shown  in  a  ball-­‐and-­‐sBck  
    representaBon,  with  hydrogen  
    bonds  depicted  as  dashed  lines.    
    • Carbon  atoms  of  the  protein  are  
    black,  while  carbon  atoms  of  Rif  
    are  orange.  Oxygen  atoms  are  red  
    and  nitrogen  atoms  are  blue  
    Cell.  2001  Mar  23;104(6):901-­‐12  
    Mechanism  of  InhibiBon  
    • Rif  does  not  affect  nt  +1  
    (green)  or  -­‐1  
    • Phosphates  of  -­‐2  clashes  with  
    Rif  
    • Nt  -­‐3  -­‐  -­‐5  have  mulBple  steric  
    clashes  with  Rif  
    • “Rif  sterically  blocks  the  path  
    of  the  elongaBng  RNA  
    transcript  at  the  5ʹ′  end,  and  
    indicates  that  the  blockage  is  
    a  direct  consequence  of  Rif  
    binding  in  its  site”      
    Cell.  2001  Mar  23;104(6):901-­‐12  
    Resistance  
    • High  rate  of  resistance  development  
    • As  a  result,  rif  is  ofen  used  in  combinatorial  
    treatments  and  only  against  certain  types  of  
    infecBons  
    • Most  resistance  occurs  in  rpoB,  β-­‐subunit  of  
    RNA  polymerase  
    Streptolydigin  
    • Streptolydigin:  polykeBde-­‐derived  tetramic-­‐
    acid  
    • Originally  isolated  from  Streptomyces  
    griseoflavus  
    Biosynthesis  
    Chemical  Synthesis  
    Mechanism  of  AcBon  
    • Streptolydigin  inhibits  nucleoBde  addiBon  in  transcripBon  iniBaBon,  nucleoBde  addiBon  in  
    transcripBon  elongaBon,  and  pyrophosphorolysis  
    • Tetramic-­‐acid  contacts  the  bridge  helix  and  trigger  loop;  the  streptolol  moiety  contacts  the  
    bridge  helix  
    • Interferes  with  structural  cycling  
    Myxopyronin  
    • PolykeBde-­‐derived  α-­‐pyrone    
    • Isolated  from  Myxobacterium  Myxococcus  
    fulvus  
    Biosynthesis  
    • Less  well  understood  
    • Linked  to  synthesis  of  corallopyronin  A  
    Mechanism  of  AcBon  
    • Myx  interacts  with  the  RNAP  “switch  region”  :  
    the  hinge  that  mediates  opening  and  closing  
    of  the  RNAP  “clamp“  
    • This  inhibits  opening  and  closing  of  the  acBve  
    site  and  unwinding  of  DNA  for  progression  
     
    References  


























    PMID:  15718136  
    hkp://www.ncbi.nlm.nih.gov/books/NBK21261/  
    Journal  of  AnBmicrobial  Chemotherapy  (2005)  55,  518–522  doi:10.1093/jac/dki030  
    DOI:  10.1039/B418460B  (Paper)  Analyst,  2005,  130,  1032-­‐1037  
    hkp://www.microbiologybook.org/mayer/anBbiot.htm  
    doi:  10.1128/AAC.48.7.2610-­‐2616.2004  AnFmicrob.  Agents  Chemother.  July  2004  vol.  48  no.  7  2610-­‐2616    
    Rcsb  pdbid  3TZF    
    DOI:10.2210/pdb2w9h/pdb    
    Rcsb  pdbid  2w9h  
    hkp://www.d.umn.edu/~jfitzake/Lectures/DMED/FolateB12/NucleoBdeBiochemistry.html  
    AnFmicrob.  Agents  Chemother.  March  2004  vol.  48  no.  3  799-­‐803    
    Appl.  Environ.  Microbiol.  September  2013  vol.  79  no.  18  5550-­‐5558    
    PMC3250697  -­‐  Can  J  Infect  Dis.  1999  May-­‐Jun;  10(3):  207–238.    
    Clin  Infect  Dis.  2005  Jul  15;41  Suppl  2:S113-­‐9.  
    J.  AnFmicrob.  Chemother.  (2000)  46  (suppl  3):  17-­‐24.    
    www.intechopen.com/download/pdf/38653  
    doi:10.1016/S0960-­‐894X(99)00326-­‐1  
    hRp://www.ncbi.nlm.nih.gov/Class/MLACourse/Modules/MolBioReview/central_dogma.html  
    Chem.  Rev.,  2005,  105  (2),  pp  621–632  DOI:  10.1021/cr030112j  
    Reviews  of  InfecFous  Diseases    
    Vol.  5,  Supplement  3.  The  Use  of  Rifampin  in  the  Treatment  of  Nontuberculous  InfecBons  (Jul.  -­‐  Aug.,  1983),  pp.  S402-­‐S406    
    Cell.  2001  Mar  23;104(6):901-­‐12.  
    doi:10.1016/j.chembiol.2009.09.015  
    J.  Am.  Chem.  Soc.,  2010,  132  (41),  pp  14394–14396  DOI:  10.1021/ja107190w  
    Curr  Opin  Struct  Biol.  2009  Dec;  19(6):  715–723.    
    Chembiochem.  2013  Sep  2;14(13):1581-­‐9.  doi:  10.1002/cbic.201300289.  Epub  2013  Aug  26.  
    Inhibitors  of  Nucleic  Acid  
    Processes  and  Metabolism  
    caputo@rowan.edu  
    DNA  Synthesis  Inhibitors  
    • Prevent  the  replica?on  of  DNA,  thereby  
    blocking  cell  division/replica?on  
     
    Nucleic  Acid  Inhibitors  
    • Prevent  the  synthesis  of  DNA  nucleo?des,  
    preven?ng  DNA  replica?on  
    RNA  Synthesis  Inhibitors  
    • Block  RNA  polymerases  (transcrip?on  of  
    genes)  
    • Four  classes  of  RNAPol  inhibitors  
    – rifamycins    -­‐  blocks  RNA  extension  
    – sorangicin    -­‐  blocks  RNA  extension  
    – streptolydigin    -­‐  blocks  RNAPol  cataly?c  recycling  
    – myxopyronin.    -­‐  Blocks  RNAPol  interac?on  with  
    DNA  
    Rifamycin  
    Streptolydigin  
    myxopyronin    
    DNA  Background  
    • Source  of  gene?c  informa?on  
    • “long  term”  storage  of  informa?on  in  genes  
    • DNA  is  a  biopolymer  of  nucleo?des  
    DNA  Synthesis  -­‐  Background  
    • Required  for  duplica?on  of  cells  
    • Need  to  pass  on  a  copy  of  DNA  to  each  
    “daughter”  cell  
    • Mul?ple  proteins  involved  in  duplica?on  
    process  
    Fig. 7-10
    Semiconservative
    replication  
    Parental strand  
    New strand  
    Table 7-2
    Table 7-2
    Fig. 7-13
    RNA primer  
    Lagging strand  
    Primase  
    Single-strand
    binding protein  
    Helicase  
    Free 3ʹ′-OH  
    DNA polymerase III  
    Leading strand  
    RNA primer  
    Fig. 7-17
    Origin (DnaA
    binding site)  
    Replication
    forks  
    Lagging  
    Leading  
    Leading  
    Lagging  
    Direction  
    Direction  
    Origin  
    Replication
    fork  
    Table 7-2
    Fig. 7-15
    DNA polymerase III  
    3ʹ′-OH  
    RNA primer  
    5ʹ′-P  
    DNA polymerase I  
    3ʹ′-OH 5ʹ′-P  
    DNA ligase  
    Table 7-2
    Fig. 7-16
    Origin of
    replication  
    Replication
    forks  
    Newly
    synthesized
    DNA  
    Theta
    structure  
    Fig. 7-19
    Newly synthesized strand  
    DNA polymerase III  
    RNA primer  
    DNA helicase  
    Leading strand template  
    DNA gyrase  
    Tau  
    Parental DNA  
    RNA primer  
    DNA polymerase III  
    DNA primase  
    Newly synthesized strand  
    Lagging
    strand
    template  
    Single-strand
    DNA-binding
    proteins  
    Table 7-2
    Fluoroquinolones  
    RNA  Synthesis  
    • Varies  significantly  from  eukaryo?c  cells  
    • Consists  of  two  subunits  
    – RNA  Polymerase  (RNA  extension)    
    – Sigma  factor  (promoter  binding)  
    • The  complete  func?onal  complex  consists  of  6  
    proteins:  β, β’, αΙ, αΙΙ, ω,σ
    • Sigma  factors  vary  based  on  which  promoter  
    the  polymerase  is  binding  to  
    Fig. 7-21
    RNA polymerase
    (core enzyme)  
    Promoter region  
    Sigma factor  
    Gene(s) to be transcribed
    (light green strand)  
    Sigma recognizes
    promoter and
    initiation site  
    Sigma  
    RNA  
    Transcription begins; sigma
    released. RNA chain growth
    continues to termination site  
    Termination site
    reached; chain
    growth stops  
    Release of
    polymerase
    and RNA  
    DNA
    Short transcripts  
    Longer transcripts  
    Fig. 7-22
    RNA polymerase
    (core enzyme)  
    Transcription  
    Sigma  
    mRNA start  
    1.
    2.
    3.
    4.
    5.
    6.
    –35 sequence  
    Pribnow box  
    Consensus  
    Promoter sequence  
    Table 7-3
    Fig. 9-7
    arg Promoter   arg Operator  
    argC  
    RNA
    polymerase  
    argB  
    argH  
    Transcription proceeds  
    Repressor  
    arg Promoter   arg Operator  
    RNA
    polymerase  
    argC  
    argB  
    argH  
    Corepressor
    Transcription blocked  
    (arginine)  
    Repressor  
    Fig. 9-8
    lac Promoter   lac Operator  
    lacZ  
    RNA
    polymerase  
    lacY  
    lacA  
    Transcription proceeds  
    Repressor  
    lac Promoter   lac Operator  
    lacZ  
    RNA
    polymerase  
    lacY  
    lacA  
    Transcription proceeds  
    Repressor  
    Inducer  
    Fig. 9-9
    Activator
    binding site   mal Promoter  
    malE  
    malF  
    malG  
    No transcription  
    RNA
    polymerase  
    Maltose activator protein  
    Activator
    binding site   mal Promoter  
    malE  
    RNA
    polymerase  
    Maltose activator protein  
    Inducer  
    malF  
    malG  
    Transcription proceeds  
    Fig. 9-10
    DNA  
    Protein  
    Fig. 9-11
    Activator
    binding site  
    Promoter  
    RNA
    polymerase   Transcription
    proceeds  
    Activator protein  
    Promoter  
    Activator protein  
    RNA
    polymerase   Transcription
    proceeds  
    Activator
    binding site  
    Differences  
    • There  are  significant  differences  between  
    prokaryo?c  and  eukaryo?c  polymerases  
    • Prokaryo?c  transcripts  contain  mul?ple  gene  
    products  
    • Eukaryo?c  polymerases  are  more  complex  
    References  















    PMID:  15718136  
    h\p://www.ncbi.nlm.nih.gov/books/NBK21261/  
    Journal  of  An?microbial  Chemotherapy  (2005)  55,  518–522  doi:10.1093/jac/dki030  
    DOI:  10.1039/B418460B  (Paper)  Analyst,  2005,  130,  1032-­‐1037  
    h\p://www.microbiologybook.org/mayer/an?biot.htm  
    doi:  10.1128/AAC.48.7.2610-­‐2616.2004  An#microb.  Agents  Chemother.  July  2004  vol.  48  no.  7  
    2610-­‐2616    
    Rcsb  pdbid  3TZF    
    DOI:10.2210/pdb2w9h/pdb    
    Rcsb  pdbid  2w9h  
    h\p://www.d.umn.edu/~jfitzake/Lectures/DMED/FolateB12/Nucleo?deBiochemistry.html  
    An#microb.  Agents  Chemother.  March  2004  vol.  48  no.  3  799-­‐803    
    Appl.  Environ.  Microbiol.  September  2013  vol.  79  no.  18  5550-­‐5558    
    Brock  –  biology  of  microorganisms  
    PMID:  19926275    
    PMID:  11313498  
    Inhibitors  of  Nucleic  Acid  Processes  
    and  Metabolism:  
    DNA  Synthesis  Inhibitors  
    caputo@rowan.edu  
    DNA  Synthesis  
    • Replica?on  of  DNA  is  required  for  cell  division  
    • Provides  necessary  gene?c  informa?on  for  all  
    cellular  processes  
    • Cells  cannot  survive  without  in-­‐tact  DNA  
    DNA  Synthesis  Inhibitors  
    • Prevent  the  replica?on  of  DNA,  thereby  
    blocking  cell  division/replica?on  
     
    Table 7-2
    Fluoroquinolones  
    Fluoroquinolones   Nalidixic  Acid  
    • Original  molecule,  nalidixic  acid,  
    isolated  as  a  side  product  from  
    the  synthesis  of  chloroquine  in  
    the  1960s  
    • Nalidixic  acid  is  primarily  
    bactericidal  
    • Later  deriva?ves  include  the  
    fluorinated  core  known  as  
    fluoroquinolone  
    DRUG  
    CAS  REGISTRY  
    NO  
    MOLECULAR  FORMULA   STRUCTURE  
    Ciprofloxacin  HCl  
    86393-­‐32-­‐0  
    C17-­‐H18-­‐F-­‐N3-­‐O3.Cl-­‐
    H.H2-­‐O  
    Gemifloxacin  
    175463-­‐14-­‐6  
    C18-­‐H20-­‐F-­‐N5-­‐O4  
    Levofloxacin  
    100986-­‐85-­‐4  
    C18-­‐H20-­‐F-­‐N3-­‐O4    
    Moxifloxacin  HCl  
    186826-­‐86-­‐8    
    C21-­‐H24-­‐F-­‐N3-­‐O4.Cl-­‐H  
    Norfloxacin  
    70458-­‐96-­‐7  
    C16-­‐H18-­‐F-­‐N3-­‐O3  
    Ofloxacin  
    82419-­‐36-­‐1  
    C18-­‐H20-­‐F-­‐N3-­‐O4    
    Synthesis  
    Solid-­‐Phase  Synthesis  
    Structural  Aspects  
    Mechanism  of  Ac?on  
    • Act  by  disrup?ng  DNA  synthesis  
    • Targets  are  DNA  gyrase  and  Topoisomerases  
    • Disrupt  the  progression  of  the  replica?on  fork  
    • Ac?on  can  be  bactericidal  or  bacteriosta?c,  
    depending  on  concentra?on  
    Resistance  
    • Two  iden?fied  mechanisms  of  resistance  
    • Muta?ons  in  parC  and  gyrA  reduce  efficacy  
    • Muta?ons  affec?ng  accumula?on  of  
    fluoroquinolones  have  also  been  iden?fied  
    (mul?drug  efflux  pumps)  
     
    References  

















    PMID:  15718136  
    h\p://www.ncbi.nlm.nih.gov/books/NBK21261/  
    Journal  of  An?microbial  Chemotherapy  (2005)  55,  518–522  doi:10.1093/jac/dki030  
    DOI:  10.1039/B418460B  (Paper)  Analyst,  2005,  130,  1032-­‐1037  
    h\p://www.microbiologybook.org/mayer/an?biot.htm  
    doi:  10.1128/AAC.48.7.2610-­‐2616.2004  An#microb.  Agents  Chemother.  July  2004  vol.  48  no.  7  
    2610-­‐2616    
    Rcsb  pdbid  3TZF    
    DOI:10.2210/pdb2w9h/pdb    
    Rcsb  pdbid  2w9h  
    h\p://www.d.umn.edu/~jfitzake/Lectures/DMED/FolateB12/Nucleo?deBiochemistry.html  
    An#microb.  Agents  Chemother.  March  2004  vol.  48  no.  3  799-­‐803    
    Appl.  Environ.  Microbiol.  September  2013  vol.  79  no.  18  5550-­‐5558    
    PMC3250697  -­‐  Can  J  Infect  Dis.  1999  May-­‐Jun;  10(3):  207–238.    
    Clin  Infect  Dis.  2005  Jul  15;41  Suppl  2:S113-­‐9.  
    J.  An#microb.  Chemother.  (2000)  46  (suppl  3):  17-­‐24.    
    www.intechopen.com/download/pdf/38653  
    doi:10.1016/S0960-­‐894X(99)00326-­‐1  
    Inhibitors  of  Nucleic  Acid  Processes  
    and  Metabolism:  
    RNA  Synthesis  Inhibitors  
    caputo@rowan.edu  
    RNA  Synthesis  
    RNA  Synthesis  Inhibitors  
    • Block  RNA  polymerases  (transcrip?on  of  
    genes)  
    • Four  classes  of  RNAPol  inhibitors  
    – rifamycins    -­‐  blocks  RNA  extension  
    – sorangicin    -­‐  blocks  RNA  extension  
    – streptolydigin    -­‐  blocks  RNAPol  cataly?c  recycling  
    – myxopyronin.    -­‐  Blocks  RNAPol  interac?on  with  
    DNA  
    Rifamycin  
    Streptolydigin  
    myxopyronin    
    Rifamycin  
    • Originally  isolated  from  the  bacterium    
    Amycolatopsis  rifamycinica    
     
    Biosynthe?c  Pathway  
    • Mul?ple  genes  involved  in  synthesis  
    • 10  step  synthesis  to  create  AHBA,  a  rifampin  
    precursor  
    Mechanism  of  Ac?on  
    • Rif  binds  to  the  RNAPol  β  subunit  
    • Binds  near  the  DNA/RNA  interface  
    • Does  NOT  directly  bind  to  the  RNAPol  ac?ve  
    site  
    Complex  of  RNAPol  and  Rif  
    Three-­‐dimensional  structure  of  Taq  
    core  RNAP  in  complex  with  Rif,  
    generated  using  GRASP  (Nicholls  et  al.,  
    1991).  The  backbone  of  the  RNAP  
    structure  is  shown  as  tubes,  along  with  
    the  color  coded  transparent  molecular  
    surface  (β,  cyan;  β’,  pink;  ω,  white;  the  
    α  subunits  are  behind  the  RNAP  and  
    are  not  visible).  The  Mg2+  ion  chelated  
    at  the  ac?ve  site  is  shown  as  a  
    magenta  sphere.  The  Rif  is  shown  as  
    CPK  atoms  (carbon,  orange;  oxygen,  
    red;  nitrogen,  blue).  
    Binding  Site  Interac?ons  
    • Schema?c  drawing  of  RNAP  β  
    subunit  interac?ons  with  Rif,  
    modified  from  LIGPLOT  (Wallace  et  
    al.,  1995).  
    • Residues  forming  van  der  Waals  
    interac?ons  are  indicated,  those  
    par?cipa?ng  in  hydrogen  bonds  
    are  shown  in  a  ball-­‐and-­‐s?ck  
    representa?on,  with  hydrogen  
    bonds  depicted  as  dashed  lines.    
    • Carbon  atoms  of  the  protein  are  
    black,  while  carbon  atoms  of  Rif  
    are  orange.  Oxygen  atoms  are  red  
    and  nitrogen  atoms  are  blue  
    Mechanism  of  Inhibi?on  
    • Rif  does  not  affect  nt  +1  
    (green)  or  -­‐1  
    • Phosphates  of  -­‐2  clashes  with  
    Rif  
    • Nt  -­‐3  -­‐  -­‐5  have  mul?ple  steric  
    clashes  with  Rif  
    • “Rif  sterically  blocks  the  path  
    of  the  elonga?ng  RNA  
    transcript  at  the  5ʹ′  end,  and  
    indicates  that  the  blockage  is  
    a  direct  consequence  of  Rif  
    binding  in  its  site”      
    Resistance  
    • High  rate  of  resistance  development  
    • As  a  result,  rif  is  oxen  used  in  combinatorial  
    treatments  and  only  against  certain  types  of  
    infec?ons  
    • Most  resistance  occurs  in  rpoB,  β-­‐subunit  of  
    RNA  polymerase  
    Streptolydigin  
    • Streptolydigin:  polyke?de-­‐derived  tetramic-­‐
    acid  a  
    • Originally  isolated  from  Streptomyces  
    griseoflavus  
    Biosynthesis  
    Chemical  Synthesis  
    Mechanism  of  Ac?on  
    • Streptolydigin  inhibits  nucleo?de  addi?on  in  transcrip?on  ini?a?on,  nucleo?de  addi?on  in  
    transcrip?on  elonga?on,  and  pyrophosphorolysis  
    • Tetramic-­‐acid  contacts  the  bridge  helix  and  trigger  loop;  the  streptolol  moiety  contacts  the  
    bridge  helix  
    • Interferes  with  structural  cycling  
    Myxopyronin  
    • polyke?de-­‐derived  α-­‐pyrone    
    • Isolated  from  Myxobacterium  Myxococcus  
    fulvus  
    Biosynthesis  
    • Less  well  understood  
    • Linked  to  synthesis  of  corallopyronin  A  
    Mechanism  of  Ac?on  
    • Myx  interacts  with  the  RNAP  “switch  region”  :  
    the  hinge  that  mediates  opening  and  closing  
    of  the  RNAP  “clamp“  
    • This  inhibits  opening  and  closing  of  the  ac?ve  
    site  and  unwinding  of  DNA  
     
    References  



























    PMID:  15718136  
    h\p://www.ncbi.nlm.nih.gov/books/NBK21261/  
    Journal  of  An?microbial  Chemotherapy  (2005)  55,  518–522  doi:10.1093/jac/dki030  
    DOI:  10.1039/B418460B  (Paper)  Analyst,  2005,  130,  1032-­‐1037  
    h\p://www.microbiologybook.org/mayer/an?biot.htm  
    doi:  10.1128/AAC.48.7.2610-­‐2616.2004  An#microb.  Agents  Chemother.  July  2004  vol.  48  no.  7  2610-­‐2616    
    Rcsb  pdbid  3TZF    
    DOI:10.2210/pdb2w9h/pdb    
    Rcsb  pdbid  2w9h  
    h\p://www.d.umn.edu/~jfitzake/Lectures/DMED/FolateB12/Nucleo?deBiochemistry.html  
    An#microb.  Agents  Chemother.  March  2004  vol.  48  no.  3  799-­‐803    
    Appl.  Environ.  Microbiol.  September  2013  vol.  79  no.  18  5550-­‐5558    
    PMC3250697  -­‐  Can  J  Infect  Dis.  1999  May-­‐Jun;  10(3):  207–238.    
    Clin  Infect  Dis.  2005  Jul  15;41  Suppl  2:S113-­‐9.  
    J.  An#microb.  Chemother.  (2000)  46  (suppl  3):  17-­‐24.    
    www.intechopen.com/download/pdf/38653  
    doi:10.1016/S0960-­‐894X(99)00326-­‐1  
    hTp://www.ncbi.nlm.nih.gov/Class/MLACourse/Modules/MolBioReview/central_dogma.html  
    Chem.  Rev.,  2005,  105  (2),  pp  621–632  DOI:  10.1021/cr030112j  
    Reviews  of  Infec#ous  Diseases    
    Vol.  5,  Supplement  3.  The  Use  of  Rifampin  in  the  Treatment  of  Nontuberculous  Infec?ons  (Jul.  -­‐  Aug.,  1983),  pp.  S402-­‐S406    
    Cell.  2001  Mar  23;104(6):901-­‐12.  
    doi:10.1016/j.chembiol.2009.09.015  
    J.  Am.  Chem.  Soc.,  2010,  132  (41),  pp  14394–14396  DOI:  10.1021/ja107190w  
    Curr  Opin  Struct  Biol.  2009  Dec;  19(6):  715–723.    
    Chembiochem.  2013  Sep  2;14(13):1581-­‐9.  doi:  10.1002/cbic.201300289.  Epub  2013  Aug  26.  
    dx.doi.org/10.1021/ja405949a  |  J.  Am.  Chem.  Soc.  2013,  135,  10638−10641  
    Inhibitors  of  Nucleic  Acid  
    Processes  and  Metabolism  
    caputo@rowan.edu  
    Nucleic  Acid  Inhibitors  
    • Prevent  the  synthesis  of  DNA  nucleo?des,  
    preven?ng  DNA  replica?on  
    Trimethoprim/sulfamethoxazole  
    • Inhibitors  of  folate  biosynthesis  
    • Each  individual  component  is  
    bacteriosta?c,  in  combina?on  act  
    as  a  bactericide.  
    • Sulfamethoxazole  acts  as  a  
    compe?tor  in  the  synthesis  of  
    folate/folic  acid  precursors.  
    • Trimethoprim  inhibits  DHFR,  which  
    converts  folic  acid  into  
    tetrahydrofolate  
    Sulfamethoxazole  
    • Class  of  “sulfonamide”  drugs  
    • Originally  isolated  from  coal  tar  dyes.  
    • Originally  referred  to  as  “sulfa”  or  “sulpha”  
    drugs  
    • Had  great  success  in  early/mid  1900’s  
    Sulfonamides  -­‐  Synthesis  
    Sulfonamides  -­‐  Synthesis  
    Sulfamethoxazole  inhibits  
    dihydropteroate  synthetase  
    Sulfamethoxazole  inhibits  
    dihydropteroate  synthetase  
    Trimethoprim  inhibits                
    Dihydrofolate  Reductase  
    • DHFR  reduces  dihydrofolic  acid  into  
    tetrahydrofolic  acid  
    Synthesis  of  Trimethoprin  
    Trimethoprim  inhibits                
    Dihydrofolate  Reductase  
    Trimethoprim  inhibits                
    Dihydrofolate  Reductase  
    References  



























    PMID:  15718136  
    h\p://www.ncbi.nlm.nih.gov/books/NBK21261/  
    Journal  of  An?microbial  Chemotherapy  (2005)  55,  518–522  doi:10.1093/jac/dki030  
    DOI:  10.1039/B418460B  (Paper)  Analyst,  2005,  130,  1032-­‐1037  
    h\p://www.microbiologybook.org/mayer/an?biot.htm  
    doi:  10.1128/AAC.48.7.2610-­‐2616.2004  An#microb.  Agents  Chemother.  July  2004  vol.  48  no.  7  2610-­‐2616    
    Rcsb  pdbid  3TZF    
    DOI:10.2210/pdb2w9h/pdb    
    Rcsb  pdbid  2w9h  
    h\p://www.d.umn.edu/~jfitzake/Lectures/DMED/FolateB12/Nucleo?deBiochemistry.html  
    An#microb.  Agents  Chemother.  March  2004  vol.  48  no.  3  799-­‐803    
    Appl.  Environ.  Microbiol.  September  2013  vol.  79  no.  18  5550-­‐5558    
    PMC3250697  -­‐  Can  J  Infect  Dis.  1999  May-­‐Jun;  10(3):  207–238.    
    Clin  Infect  Dis.  2005  Jul  15;41  Suppl  2:S113-­‐9.  
    J.  An#microb.  Chemother.  (2000)  46  (suppl  3):  17-­‐24.    
    www.intechopen.com/download/pdf/38653  
    doi:10.1016/S0960-­‐894X(99)00326-­‐1  
    hTp://www.ncbi.nlm.nih.gov/Class/MLACourse/Modules/MolBioReview/central_dogma.html  
    Chem.  Rev.,  2005,  105  (2),  pp  621–632  DOI:  10.1021/cr030112j  
    Reviews  of  Infec#ous  Diseases    
    Vol.  5,  Supplement  3.  The  Use  of  Rifampin  in  the  Treatment  of  Nontuberculous  Infec?ons  (Jul.  -­‐  Aug.,  1983),  pp.  S402-­‐S406    
    Cell.  2001  Mar  23;104(6):901-­‐12.  
    doi:10.1016/j.chembiol.2009.09.015  
    J.  Am.  Chem.  Soc.,  2010,  132  (41),  pp  14394–14396  DOI:  10.1021/ja107190w  
    Curr  Opin  Struct  Biol.  2009  Dec;  19(6):  715–723.    
    Chembiochem.  2013  Sep  2;14(13):1581-­‐9.  doi:  10.1002/cbic.201300289.  Epub  2013  Aug  26.  
    dx.doi.org/10.1021/ja405949a  |  J.  Am.  Chem.  Soc.  2013,  135,  10638−10641  

    Save Time On Research and Writing
    Hire a Pro to Write You a 100% Plagiarism-Free Paper.
    Get My Paper
    Still stressed from student homework?
    Get quality assistance from academic writers!

    Order your essay today and save 25% with the discount code LAVENDER