Need help with a Statistics Case Study that covers the following subtopics
Executive Summary
Table of contents
Case background
Goals
Body of analysis
Alternative solutions
Implementation Plan
Conclusion
Recommendation
References
Appendices.
I have attached the calculations and data needed to create the case study as well as the outline for the case. Thanks
OUTLINE
Case Background
Lenovo is a US$34 billion personal technology company and the world’s largest PC vendor. They have more than 33,000 employees in more than 60 countries serving customers in more than 160 countries. A global Fortune 500 company, Lenovo has headquarters is in Beijing, China and Morrisville, North Carolina, U.S.
Goal
You have been asked by CFO of Lenovo to develop the most accurate method for forecasting Lenovo sales on quarterly basis. You have been provided with sales figures of the past 6 years for each quarter that are publicly available on investor relations page of Lenovo website.
Body of the Analysis
1. Plot time series and comment on its pattern.
2. Develop time series decomposition. Start by using four quarters moving average and centered moving average to develop indexes for each quarter. Then deseasonalize revenue and develop linear and quadratic estimated regression equations.
3. Forecast sales for all past years and also the next four quarters using both regression equations
4. Plot forecasted sales using both methods with the actual sales on a graph and comment on it.
5. Calculate mean square error of linear and quadratic regression models and comment on the results.
Alternative Solutions
1. Instead of decomposing time series, use actual sales that are not seasonally adjusted and develop additional data using dummy variables to reflect seasonability of each quarter.
2. Develop estimated quadratic regression equation with dummy variables.
3. Use quadratic regression model equation with dummy variables to forecast past sales and sales for the next four quarters.
4. Plot forecasted sales on the same graph and compare it with the actual sales and results from time decomposition methods.
5. Calculate mean square error using dummy variables method and compare results with MSE of time decomposition models. Comment on the results.
Implementation plan
Develop plan for Lenovo to implement new forecasting method that you chose as the most accurate and discuss implementation through the entire corporation and its business units.
Recommendations
Recommend the most accurate method of forecasting for Lenovo based on your analysis. Comment on benefits but also mention shortcomings.
David Borovka | Milcent Taruwinga BUSN5011 Case Study – Forecasting for Lenovo
>time series decomposition
moving 00
-quarter
average forec. Quad.
0 -0 0, 2007
,0 ,6 0
,682
,7 ,914,7 2007-08
,3 ,133,379,896
7,664,392
2007-08
2007-08
35.75
9,234
,522,182
,807
9629452
x x total MSE x x x Q1 Q2 Q3 Q4 1.086050909 0.8912715037 0.9896758547 0.7911116238 0.9508756804 1.0326824448 1.0904980833 0.9019424106 1.0038408821 1.0810081717 1.0569733588 0.8347672546 0.9695830789 1.0292251135 1.0926061688 actual revenue Q1 2008-09 Q2 2008-09 Q3 2008-09 Q4 2008-09 Q1 2009-10 Q2 2009-10 Q3 2009-10 Q4 2009-10 Q1 2010-11 Q2 2010-11 Q3 2010-11 Q4 2010-11 Q1 2011-12 Q2 2011-12 Q3 2011-12 Q4 2011-12 Q1 201 2-13 Q2 2012-13 Q3 2012-13 Q4 2012-13 Q1 2013-14 Q2 2013-14 Q3 2013-14 Q4 2013-14 Q1 2014-15 3813096 4310323 4493881 3734203 4212634 4326225 3591287 2770785 3440778 4087231 4759414 4317392 5146672 5759983 5808331 4879385 5919916 7786386 8371858 7496278 8009696 8672601 9358746 7832358 8787098 qudratic forecast Q1 2007-08 Q2 2007-08 Q3 2007-08 Q4 2007-08 Q1 2008-09 Q2 2008-09 Q3 2008-09 Q4 2008-09 Q1 2009-10 Q2 2009-10 Q3 2009-10 Q4 2009-10 Q1 2010-11 Q2 2010-11 Q3 2010-11 Q4 2010-11 Q1 2011-12 Q2 2011-12 Q3 2011-12 Q4 2011-12 Q1 2012-13 Q2 2012-13 Q3 2012-13 Q4 2012-13 Q1 2013-14 Q2 2013-14 Q3 2013-14 Q4 2013-14 Q1 2014-15 3895621.7453800002 3848799.2997599998 3827714.6891399999 3832367.9135200004 3862758.9729000004 3918887.8672799999 4000754.5966600003 4108359.1610400002 4241701.5604200009 4400781.7948000003 4585599.8641799996 4796155.7685599998 5032449.5079399999 5294481.082320001 5582250.4917000011 5895757.7360799992 6235002.8154599993 6599985.7298400002 6990706.4792200001 7407165.0636 7849361.4829799999 8317295.7373599987 8810967.8267400004 9330377.7511199992 9875525.5105000008 10446411.104880001 11043034.534260001 11665395.798640002 12313494.898019999 linear forecast Q1 2007-08 Q2 2007-08 Q3 2007-08 Q4 2007-08 Q1 2008-09 Q2 2008-09 Q3 2008-09 Q4 2008-09 Q1 2009-10 Q2 2009-10 Q3 2009-10 Q4 2009-10 Q1 2010-11 Q2 2010-11 Q3 2010-11 Q4 2010-11 Q1 2011-12 Q2 2011-12 Q3 2011-12 Q4 2011-12 Q1 2012-13 Q2 2012-13 Q3 2012-13 Q4 2012-13 Q1 2013-14 Q2 2013-14 Q3 2013-14 Q4 2013-14 Q1 2014-15 2711682 2960845 3210008 3459171 3708334 3957497 4206660 4455823 4704986 4954149 5203312 5452475 5701638 5950801 6199964 6449127 6698290 6947453 7196616 7445779 7694942 7944105 8193268 8442431 8691594 8940757 9189920 9439083 9688246 method 3656400.29 4271731.8899999997 4262650.18 3121254.4699999997 3645892.8899999997 4360908.41 4451510.620000001 3409798.83 4034121.17 4848820.6100000003 5039106.74 4097078.87 4821085.13 5735468.4900000002 6025438.540000001 5183094.59 6006784.7699999996 7020852.0499999998 7410506.0199999996 6667845.9900000002 7591220.0899999999 8704971.290000001 9194309.1799999997 8551333.0700000003 9574391.0900000017 10787826.210000001 11376848.02 10833555.83 11956297.770000001 MSE 1 0 0 0 1 0 – 77,389.79*time period + *time period^2 + 489,883.8*q1 + *q2 + *q3
3,231,445.79 12,460.49 1,145,223.72 1,151,229.35 actual revenue Q1 2007-08 Q2 2007-08 Q3 2007-08 Q4 2007-08 Q1 2008-09 Q2 2008-09 Q3 2008-09 Q4 2008-09 Q1 2009-10 Q2 2009-10 Q3 2009-10 Q4 2009-10 Q1 2010-11 Q2 2010-11 Q3 2010-11 Q4 2010-11 Q1 2011-12 Q2 2011-12 Q3 2011-12 Q4 2011-12 Q1 201 2-13 Q2 2012-13 Q3 2012-13 Q4 2012-13 Q1 2013-14 Q2 2013-14 Q3 2013-14 Q4 2013-14 Q1 2014-15 3813096 4310323 4493881 3734203 4212634 4326225 3591287 2770785 3440778 4087231 4759414 4317392 5146672 5759983 5808331 4879385 5919916 7786386 8371858 7496278 8009696 8672601 9358746 7832358 8787098 qudratic forecast Q1 2007-08 Q2 2007-08 Q3 2007-08 Q4 2007-08 Q1 2008-09 Q2 2008-09 Q3 2008-09 Q4 2008-09 Q1 2009-10 Q2 2009-10 Q3 2009-10 Q4 2009-10 Q1 2010-11 Q2 2010-11 Q3 2010-11 Q4 2010-11 Q1 2011-12 Q2 2011-12 Q3 2011-12 Q4 2011-12 Q1 2012-13 Q2 2012-13 Q3 2012-13 Q4 2012-13 Q1 2013-14 Q2 2013-14 Q3 2013-14 Q4 2013-14 Q1 2014-15 3895621.7453800002 3848799.2997599998 3827714.6891399999 3832367.9135200004 3862758.9729000004 3918887.8672799999 4000754.5966600003 4108359.1610400002 4241701.5604200009 4400781.7948000003 4585599.8641799996 4796155.7685599998 5032449.5079399999 5294481.082320001 5582250.4917000011 5895757.7360799992 6235002.8154599993 6599985.7298400002 6990706.4792200001 7407165.0636 7849361.4829799999 8317295.7373599987 8810967.8267400004 9330377.7511199992 9875525.5105000008 10446411.104880001 11043034.534260001 11665395.798640002 12313494.898019999 linear forecast Q1 2007-08 Q2 2007-08 Q3 2007-08 Q4 2007-08 Q1 2008-09 Q2 2008-09 Q3 2008-09 Q4 2008-09 Q1 2009-10 Q2 2009-10 Q3 2009-10 Q4 2009-10 Q1 2010-11 Q2 2010-11 Q3 2010-11 Q4 2010-11 Q1 2011-12 Q2 2011-12 Q3 2011-12 Q4 2011-12 Q1 2012-13 Q2 2012-13 Q3 2012-13 Q4 2012-13 Q1 2013-14 Q2 2013-14 Q3 2013-14 Q4 2013-14 Q1 2014-15 2711682 2960845 3210008 3459171 3708334 3957497 4206660 4455823 4704986 4954149 5203312 5452475 5701638 5950801 6199964 6449127 6698290 6947453 7196616 7445779 7694942 7944105 8193268 8442431 8691594 8940757 9189920 9439083 9688246 dummy variables method 3656400.29 4271731.8899999997 4262650.18 3121254.4699999997 3645892.8899999997 4360908.41 4451510.620000001 3409798.83 4034121.17 4848820.6100000003 5039106.74 4097078.87 4821085.13 5735468.4900000002 6025438.540000001 5183094.59 6006784.7699999996 7020852.0499999998 7410506.0199999996 6667845.9900000002 7591220.0899999999 8704971.290000001 9194309.1799999997 8551333.0700000003 9574391.0900000017 10787826.210000001 11376848.02 10833555.83 11956297.770000001 01
+ *X1+ *X2+ *X3+ *X4+ *X1^2+ *X2^2+ *X3^2+ *X4^2
time period q1 q2 q3 Revenue US’000 0.000 -0.350 Observations time period q1 q2 q3 Revenue US’000 2
moving
centered
seasonal-
average
irregular
Revenue US’
0
time period
FY Quarter
Revenue US’000
4
inde
x
deseasonalized
forecast quadratic
MSE
forecast linear
MSE forec. lin.
1
Q1
20
7
8
For the quarter ended Jun
3
3,8
13
9
6
3,907,389
3,89
5
22
138,465,
18
2,7
11
1,4
29
14
19
2
Q2
For the quarter ended Sept 30, 2007
4,3
10
23
4087875.75
4,013,5
21
3,848,799
27
2,960,845
1,108,
12
3
Q3
For the quarter ended Dec 31, 2007
4,493,881
4187760.
25
4137818
1.086050909
4,206,786
3,827,7
15
143,695,070,011
3,210,008
993,566,410,982
4
Q4
For the quarter ended Mar 31, 2008
3,734,203
419
17
4189748
0.8912715037
4,
28
3,832,368
208,7
26
3,459,171
689,004,404,474
5
Q1 2008-09
For the quarter ended Jun 30, 2008
4,212,634
3966087.25
4078911.5
1.0327838689
4,3
16
3,862,759
206,159,537,808
3,708,334
370,239,293,760
6
Q2 2008-09
For the quarter ended Sept 30, 2008
4,326,225
3725232.75
3845660
1.1
24
4,028,328
3,918,888
11,977,239,878
3,957,497
5,017,093,489
7
Q3 2008-09
For the quarter ended Dec 31, 2008
3,591,287
3532268.75
3628750.75
0.9896758547
3,361,855
4,000,755
408,192,803,280
4,206,660
713,695,631,714
8
Q4 2008-09
For the quarter ended Mar 31, 2009
2,770,785
3472520.25
3502394.5
0.7911116238
3,182,619
4,108,359
856,995,087,993
4,455,823
1,621,048,758,764
9
Q1 2009-10
For the quarter ended Jun 30, 2009
3,440,778
3764552
3618536.125
0.9508756804
3,525,864
4,241,702
512,423,510,421
4,704,986
1,390,328,851,506
10
Q2 2009-10
For the quarter ended Sept 30, 2009
4,087,231
4151203.75
3957877.875
1.0326824448
3,805,791
4,400,782
354,013,846,098
4,954,149
1,318,725,710,544
11
Q3 2009-10
For the quarter ended Dec 31, 2009
4,759,414
4577677.25
4364440.5
1.0904980833
4,455,355
4,585,600
16,963,662,532
5,203,312
559,439,317,153
12
Q4 2009-10
For the quarter ended Mar 31, 2010
4,317,392
4995865.25
4786771.25
0.9019424106
4,959,105
4,796,156
26,552,392,908
5,452,475
243,414,135,896
13
Q1 2010-11
For the quarter ended Jun 30, 2010
5,146,672
5258094.5
5126979.875
1.0038408821
5,273,942
5,032,450
58,318,843,709
5,701,638
182,923,478,807
14
Q2 2010-11
For the quarter ended Sep 30, 2010
5,759,983
5398592.75
5328343.625
1.0810081717
5,363,360
5,294,481
4,744,344,819
5,950,801
345,086,591,444
15
Q3 2010-11
For the quarter ended Dec 31, 2010
5,808,331
5591903.75
5495248.25
1.0569733588
5,437,261
5,582,250
21,021,841,668
6,199,964
581,715,282,116
16
Q4 2010-11
For the quarter ended Mar 31, 2011
4,879,385
6098504.5
5845204.125
0.8347672546
5,604,629
5,895,758
84,755,771,350
6,449,127
713,176,379,971
17
Q1 2011-12
For the quarter ended Jun 30, 2011
5,919,916
6739386.25
6418945.375
0.9222567967
6,066,308
6,235,003
28,458,019,542
6,698,290
399,401,543,455
18
Q2 2011-12
For the quarter ended Sep 30, 2011
7,786,386
7393609.5
7066497.875
1.1018733944
7,250,229
6,599,986
422,815,783,085
6,947,453
91,673,060,645
19
Q3 2011-12
For the quarter ended Dec 31, 2011
8,371,858
7916054.5
7654832
1.0936697239
7,837,016
6,990,706
716,238,996,676
7,196,616
410,111,548,372
20
Q4 2011-12
For the quarter ended Mar 31, 2012
7,496,278
8137608.25
8026831.375
0.9339025139
8,610,483
7,407,165
1,447,972,902,754
7,445,779
1,356,534,291,317
21
Q1 2012-13
For the quarter ended Jun 30, 2012
8,009,696
8384330.25
8260969.25
0.9695830789
8,207,765
7,849,361
128,453,287,387
7,694,942
262,987,724,621
22
Q2 2012-13
For the quarter ended Sep 30, 2012
8,672,601
8468350.25
8426340.25
1.0292251135
8,075,420
8,317,296
58,503,715,322
7,944,105
17,243,714,461
23
Q3 2012-13
For the quarter ended Dec 31, 2012
9,358,746
8662700.75
8565525.5
1.0926061688
8,760,855
8,810,968
2,511,251,657
8,193,268
322,155,498,058
24
Q4 2012-13
For the quarter ended Mar31, 2013
7,832,358
8,996,516
9,330,378
111,463,963,870
8,442,431
307,009,697,621
25
Q1 2013-14
For the quarter ended Jun 30, 2013
8,787,098
9,004,391
9,875,526
758,874,602,187
8,691,594
97,842,226,477
26
Q2 2013-14
For the quarter ended Sep 30, 2013
forecast
for the
upcoming
quarters:10,446,411
264,684,193,689
8,940,757
621,207,328,990
27
Q3 2013-14
For the quarter ended Dec 31, 2013
11,043,035
total MSE
9,189,920
28
Q4 2013-14
For the quarter ended Mar 31, 2014
11,665,396
9,439,083
29
Q1 2014-15
For the quarter ended Jun 30, 2014
12,313,495
9,688,246
LINEST (qudratic)
12868.9174834035
-85429.1981206864
3968182.02604002
Seasonal Indexes
x^2
constant
estimated quadratic regression equation:
ŷ = 3,968,182 + 12,869 x^2 – 8,542 x
1.0327838689
1.1249629452
LINEST (linear)
249162.656447805
2462518.6804818
x constant 0.9222567967 1.1018733944 1.0936697239 0.9339025139
estimated linear regression equation:
ŷ = 2,462,519 + 249,163 x
0.9758680614
1.0739504139
1.0682456831
0.8705990613
Q1 2007-08
Q2 2007-08
Q3 2007-08
Q4 2007-08
dummy variables
dummy variables
dummy variables dummy variables dummy variables
time period FY Quarter Revenue US’000
q1
q2
q3
quadratic forecast
Forecast error
1 Q1 2007-08
For the quarter ended Jun 30, 2007
3,813,096
3,656,400
156,695.71
24,553,545,532.40
2 Q2 2007-08 For the quarter ended Sept 30, 2007
4,310,323
4,271,732
38,591.11
1,489,273,771.03
3 Q3 2007-08 For the quarter ended Dec 31, 2007 4,493,881 0 0 1
4,262,650
231,230.82
53,467,692,117.87
4 Q4 2007-08 For the quarter ended Mar 31, 2008 3,734,203 0 0 0
3,121,254
612,948.53
375,705,900,429.16
5 Q1 2008-09 For the quarter ended Jun 30, 2008 4,212,634 1 0 0
3,645,893
566,741.11
321,195,485,764.03
6 Q2 2008-09 For the quarter ended Sept 30, 2008 4,326,225 0 1 0
4,360,908
– 34,683.41
1,202,938,929.23
7 Q3 2008-09 For the quarter ended Dec 31, 2008 3,591,287 0 0 1
4,451,511
– 860,223.62
739,984,676,405.91
8 Q4 2008-09 For the quarter ended Mar 31, 2009 2,770,785 0 0 0
3,409,799
– 639,013.83
408,338,674,931.27
9 Q1 2009-10 For the quarter ended Jun 30, 2009 3,440,778 1 0 0
4,034,121
– 593,343.17
352,056,117,385.65
10 Q2 2009-10 For the quarter ended Sept 30, 2009 4,087,231 0 1 0
4,848,821
– 761,589.61
580,018,734,059.95
11 Q3 2009-10 For the quarter ended Dec 31, 2009 4,759,414 0 0 1
5,039,107
– 279,692.74
78,228,028,808.71
12 Q4 2009-10 For the quarter ended Mar 31, 2010 4,317,392 0 0 0
4,097,079
220,313.13
48,537,875,250.40
13 Q1 2010-11 For the quarter ended Jun 30, 2010 5,146,672 1 0 0
4,821,085
325,586.87
106,006,809,916.40
14 Q2 2010-11 For the quarter ended Sep 30, 2010 5,759,983 0 1 0
5,735,468
24,514.51
600,961,200.54
15 Q3 2010-11 For the quarter ended Dec 31, 2010 5,808,331 0 0 1
6,025,439
– 217,107.54
47,135,683,924.85
16 Q4 2010-11 For the quarter ended Mar 31, 2011 4,879,385 0 0 0
5,183,095
– 303,709.59
92,239,515,057.97
17 Q1 2011-12 For the quarter ended Jun 30, 2011 5,919,916 1 0 0
6,006,785
– 86,868.77
7,546,183,201.31
18 Q2 2011-12 For the quarter ended Sep 30, 2011 7,786,386 0 1 0
7,020,852
765,533.95
586,042,228,602.60
19 Q3 2011-12 For the quarter ended Dec 31, 2011 8,371,858 0 0 1
7,410,506
961,351.98
924,197,629,449.92
20 Q4 2011-12 For the quarter ended Mar 31, 2012 7,496,278 0 0 0
6,667,846
828,432.01
686,299,595,192.64
21 Q1 2012-13 For the quarter ended Jun 30, 2012 8,009,696 1 0 0
7,591,220
418,475.91
175,122,087,250.33
22 Q2 2012-13 For the quarter ended Sep 30, 2012 8,672,601 0 1 0
8,704,971
– 32,370.29
1,047,835,674.68
23 Q3 2012-13 For the quarter ended Dec 31, 2012 9,358,746 0 0 1
9,194,309
164,436.82
27,039,467,771.71
24 Q4 2012-13 For the quarter ended Mar31, 2013 7,832,358 0 0 0
8,551,333
– 718,975.07
516,925,151,281.51
25 Q1 2013-14 For the quarter ended Jun 30, 2013 8,787,098 1 0 0
9,574,391
– 787,293.09
619,830,409,561.75
26 Q2 2013-14 For the quarter ended Sep 30, 2013 x 0 1 0
10,787,826
– 1
270,992,500,059
27 Q3 2013-14 For the quarter ended Dec 31, 2013 x 0 0 1
11,376,848
28 Q4 2013-14 For the quarter ended Mar 31, 2014 x 0 0 0
10,833,556
29 Q1 2014-15 For the quarter ended Jun 30, 2014 x 1 0 0
11,956,298
Equation of the model with dummy variables:
Revenue US’000 =
3,231,445.79
12,460.49
1,145,223.72
1,151,229.35
constant x x^2 q1 q2 q3
coeficients
-77,389.79
489,883.80
Nonlinear regression
XLSTAT 2013.5.05 – Nonlinear regression – on 12/11/2013 at 7:06:16 PM
Y / Quantitative: Workbook = Book1.xlsx / Sheet = dummy variables / Range = ‘dummy variables’!$D$3:$D$28 / 25 rows and 1 column
X / Quantitative: Workbook = Book1.xlsx / Sheet = dummy variables / Range = ‘dummy variables’!$A$3:$B$30,’dummy variables’!$E$3:$H$30 / 25 rows and 4 columns
Stop conditions: Iterations = 200 / Convergence =
0.000
Function: Y =
pr1
pr2
pr3
pr4
pr5
pr6
pr7
pr8
pr9
Summary statistics:
Variable
Observations
Obs. with missing data
Obs. without missing data
Minimum
Maximum
Mean
Std. deviation
Revenue US’000 25 0 25
277078
5.000
935874
6.000
5667462.280
1998003.655
time period 25 0 25
1.000
25.000
1
3.000
7.360
q1 25 0 25 0.000 1.000
0.280
0.458
q2 25 0 25 0.000 1.000
0.240
0.436
q3 25 0 25 0.000 1.000 0.240 0.436
Correlation matrix:
Variables
time period 1.000
-0.000
-0.078
0.889
q1 -0.000 1.000
-0.350
-0.016
q2 -0.078 -0.350 1.000
-0.316
0.045
q3 0.000 -0.350 -0.316 1.000
0.114
Revenue US’000 0.889 -0.016 0.045 0.114 1.000
Nonlinear regression of variable Revenue US’000:
Goodness of fit statistics:
Observations 25.000
DF
16.000
R²
0.929
SSE
6774812501447.660
MSE
423425781340.479
RMSE
650711.750
Model parameters:
Parameter
Value
Standard error
pr1
3231445.787
503915.136
pr2
-77389.785
76089.389
pr3
489883.798
365436.980
pr4
1145223.724
377434.649
pr5
1151229.348
376136.614
pr6
12460.486
2842.214
pr7 0.000 0.000
pr8 0.000 0.000
pr9 0.000 0.000
Equation of the model:
Revenue US’000 = 3231445.78663446-77389.7850241539*time period+489883.797953054*q1+1145223.72360249*q2+1151229.3482176*q3+12460.4864163614*time period^2
Predictions and residuals:
Pred(Revenue US’000)
Residual
s
1.000 1.000 0.000 0.000
0.000 1.000 0.000
3.000 0.000 0.000 1.000
0.000 0.000 0.000
5.000 1.000 0.000 0.000
6.000 0.000 1.000 0.000
0.000 0.000 1.000
0.000 0.000 0.000
1.000 0.000 0.000
0.000 1.000 0.000
0.000 0.000 1.000
0.000 0.000 0.000
1.000 0.000 0.000
14.000 0.000 1.000 0.000
0.000 0.000 1.000
16.000 0.000 0.000 0.000
1.000 0.000 0.000
0.000 1.000 0.000
0.000 0.000 1.000
0.000 0.000 0.000
1.000 0.000 0.000
0.000 1.000 0.000
23.000 0.000 0.000 1.000
0.000 0.000 0.000
25.000 1.000 0.000 0.000
Pred(Revenue US’000) / Revenue US’000
Active 3656400.285979717 4271731.8858540785 4262650.1575268516 3121254.4291996225 3645892.8198757749 4360908.3110810276 4451510.4740846911 3409798.6370883537 4034120.919095397 4848820.3016315401 5039106.3559660958 4097078.4103006497 4821084.5836385842 5735467.8575056195 6025437.8031710647 5183093.7488365099 6006783.8135053348 7020850.9787032614 7410504.8156995988 6667844.6526959343 7591218.6086956523 8704969.6652244683 9194307.3935516961 8551331.1218789238 9574388.9692095332 3813096 4310323 4493881 3734203 4212634 4326225 3591287 2770785 3440778 4087231 4759414 4317392 5146672 5759983 5808331 4879385 5919916 7786386 8371858 7496278 8009696 8672601 9358746 7832358 8787098 2000000 10000 000 2000000 10000000 Pred(Revenue US’000)
Revenue US’000
Active Obs1 Obs2 Obs3 Obs4 Obs5 Obs6 Obs7 Obs8 Obs9 Obs10 Obs11 Obs12 Obs13 Obs14 Obs15 Obs16 Obs17 Obs18 Obs19 Obs20 Obs21 Obs22 Obs23 Obs24 Obs25 156695.71402028296 38591.114145921543 231230.84247314837 612948.57080037752 566741.18012422509 -34683.311081027612 -860223.47408469114 -639013.63708835375 -593342.919095397 -761589.30163154006 -279692.35596609581 220313.5896993503 325587.41636141576 24515.142494380474 -217106.8031710647 -303708.74883650988 -86867.81350533478 765535.02129673865 961353.18430040125 828433.34730406571 418477.39130434766 -32368.665224468336 164438.60644830391 -718973.12187892385 -787290.96920953318 Observations
Residual