Complete the following problems. For assistance, you may want to refer to these examples. The Word document has instructions on using the Excel spreadsheet.
Week 04 Example Problems
Required:Download the
Week 04 Problems Excel spreadsheet
to use in completing your problems. You will notice that each problem has its own worksheet.
- A self-employed person deposits $1,250 annually in a retirement account (called a SEP-IRA) that earns 5.5%.
a. How much will be in the account at age 62 if the savings program starts when the individual is age 50?
b. How much additional money will be in the account if the saver defers retirement until age 66 and continues the contributions until then?
c. How much additional money will be in the account if the saver discontinues the contributions at age 62, but lets it build up until retirement at age 66?
2. If a firm has $250,000 to invest and can earn 8.5%, compounded annually, how much will the firm have after two years?
3. A father has decided to set aside a one time lump sum for college that will amount to $60,000 by the time his 5 year old is 18 years old (13 years). Use 8% as the rate. Figure the dollar amount to put in the fund assuming no further investments will be made. How much must he invest right now to amount to $60,000 in 13 years?
4. You win a judgment in an auto accident for $275,000. You will immediately receive $135,000 in cash, but must pay your lawyer’s fee of $91,666 out of that sum. In addition you will receive $5,500 per year for 20 years for a total of $110,000 after which the balance owed of $30,000 will be paid. If the interest rate is 7 percent, what is the current value of your settlement?
5. A firm borrows $935,000 for 7 years for a large item of equipment and installation costs. The interest rate is 7.5%. The loan requires that the interest and principal be paid in equal, annual payments that cover the interest and principal. The interest is determined on the declining balance that is owed. What are the annual payments and the amount by which the loan is reduced during the first year?
6. A company leases equipment for seven years. The equipment costs $28,000 and the owner (called the “lessor”) wants to earn 9.5% on the lease. What should be the lease payments?
Week
0
4 Example Problems
Present Value and Future Value using Excel Functions
Please download the Week 04 Example Problems Excel spreadsheet to solve the following:
Present Value
To calculate present value, we will use the built-in PV feature in Excel.
Following are the values that we will use in the Example problem on the Present Value sheet:
Rate (Interest rate)
6%
Nper (Number of periods)
5
PMT (Payment)
FV (Future value)
$100
Type
0
Click on the PV cell to see how the formula was entered. You may notice that the solution came up as a negative number, this is because cash flows out are recognized as negatives. This is easy to correct if you would like, simply enter a negative before the FV while entering the formula.
Compare this to this week’s material that demonstrates this concept using a financial calculator All you need to know to “translate” those directions is that N, number of periods is Nper, also meaning number of periods in Excel and i, interest rate, is Rate, meaning interest rate, in Excel. The rest is precisely the same. Keep PMT and Type zero for the PV and FV problems.
Try using this same formula to calculate the new balance for Example 1A and 1B. There will be a note next to the cell that will inform you if the answer is “correct” or “incorrect.” Keep working the problems until you have the correct answer.
Future Value
To calculate future value, we will use the built-in FV feature in Excel.
Following are the values that we will use in the Example problem on the Future Value sheet:
Rate (Interest rate) |
5% |
|
20 |
||
PV (Present value) |
$-100 |
|
Type |
We use the FV function in Excel to solve this problem. Click on the FV cell to see how the formula was entered.
Try using this same formula to calculate the new balance for Example 2A and 2B. There will be a note next to the cell that will inform you if the answer is “correct” or “incorrect.” Keep working the problems until you have the correct answer.
Interest
Click on the Interest tab to complete the following examples:
Simple Interest
In the Example 1 problem, there is $100 of principal, and an annual interest rate of 5%. To calculate the ending balance, first we calculate the interest (principal x rate x time), then add it to the principal. We now have a new balance of $105. If you click in the cells, you can see the formulas that were used.
Try using this same formula to calculate the new balance for Example 3A and 3B. There will be a note next to the cell that will inform you if the answer is “correct” or “incorrect.” Keep working the problems until you have the correct answer.
Compound Interest
The text explains these problems using the future value tables. In our practice activities, we will use the Power function in Excel. Powers are quick ways to multiply repeatedly rather than calculating the interest 20 times.
In Example 2, we will calculate the future value of $100 that is invested for 20 years at 5%, compounded annually.
To calculate using this model:
1. We first figure 1 + interest rate (1.05)
2. Then calculate the Power at 20 periods (2.653298) (Use the POWER function)
3. To figure the end result, we multiply the $100 (present value) X the Power result (2.653298), to end up with $265.33.
As an alternate model, we could use the Future Value function built into Excel. In Example 3, this method has been utilized.
1. Insert the function, FV, the rate is 5%
2. Nper is the 20 periods
3. PV is the $100
4. Leave the other areas blank for this example
You will see that the same answer appears as in Example 1. One thing that you may notice is that the answer appears as a negative because it is an outflow of cash. To change this, simply enter a negative before the $100.
Try using this same formula to calculate the new balance for Example 4A and 4B. There will be a note next to the cell that will inform you if the answer is “correct” or “incorrect.” Keep working the problems until you have the correct answer.
Annuities
Present Value of an Annuity
Click on the PV Annuity worksheet, in the Example you are expecting to receive $100 payments at the end of each year for three years and the rate is 6% on invested funds. We use the same PV formula, but add more information. Click on the PV cell to see how the formula was entered. The difference between an ordinary annuity and an annuity due is when the payment is made. If the payment is made at the beginning of the period, it is an annuity due. If made at the end of the period, it is an ordinary annuity. The only change in your Excel formula is that you change the type to a “1” rather than a “0”.
Try using this same formula to calculate the new balance for Example 5A and 5B. There will be a note next to the cell that will inform you if the answer is “correct” or “incorrect.” Keep working the problems until you have the correct answer.
Future Value of an Annuity
Click on the FV Annuity worksheet, in the Example you trying to calculate how much will be in your savings account if you deposit $100 payments at the end of each year for three years and the rate is 5% on savings. We use the same FV formula, but add more information. Click on the FV cell to see how the formula was entered.
Try using this same formula to calculate the new balance for Example 6A and 6B. There will be a note next to the cell that will inform you if the answer is “correct” or “incorrect.” Keep working the problems until you have the correct answer.
Adapted from:
Mayo, H. (2007). Basic finance: An introduction to financial institutions, investments & management. United States: Thomson South-Western.
Present Value
Example | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Rate | 6% | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nper | 5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
PMT | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
FV | $ | 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Type | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
PV | ($74.7 | 3 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Example 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
5% | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
$ | 15 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Incorrect | ($117.53) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Example 1B | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
0.07 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
10 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
250 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
($127.09) |
Future Value
5.00% | ||||||
20 | ||||||
– | $100.00 | |||||
$265.33 | ||||||
Example 2 | ||||||
162.8894626777 | ||||||
Example 2B | ||||||
7% | ||||||
-$250.00 | ||||||
689.7578851788 |
Interest
Simple | interest | ||||
Principal | |||||
$5.00 | |||||
New balance | $105.00 | ||||
Sample 3A | |||||
$1,000.00 | |||||
6.00% | |||||
Sample 3B | |||||
$2,500.00 | |||||
7.50% | |||||
Compound interest using power formula and FV Function | |||||
plus 1 | |||||
1 plus interest | 1.05 | ||||
Power | |||||
POWER function | 2.6532977051 | ||||
(1 + i)n | Power Function | ||||
Result | |||||
Example 3 | |||||
Term | |||||
Example 4A | |||||
4.00% | |||||
$500.00 | |||||
result | |||||
1095.5615715167 | |||||
Example 4B | |||||
$200.00 | |||||
530.6595410289 |
PV of Annuity
Present Value of an Annuity | |||||
($100) | |||||
type | |||||
$267.30 | |||||
Example 5A | |||||
410.0197435948 | |||||
Example 5B | |||||
($50.00) | |||||
405.5447889678 |
FV of Annuity
Future Value of an Annuity | ||
FV of annuity | $315.25 | |
Example 6A | ||
FV of an ordinary annuity | $563.71 | |
Example 6B | ||
4% | ||
($50) | ||
$600.31 |
Problem 1
Graded problem #1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1a. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Rate | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nper | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
PMT | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
PV | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Type | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
FV | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1b. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
C18 minus C9 | Additional money saved if the contributions continue until age 66 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1c | The first part is a repeat of 1a. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1c continued | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
C40 minus C31 | Additional money saved if contributions stop at age 62, but the money keeps growing until age 66. |
Problem 2
Problem 3
Example |
Problem 4
Problem 4. | |
Example problem from #21 | |
Problem 4 continued | Example continued |
` | |
Now add C9, C18, plus $135,000 minus $91,666 | Add H9, H18, $25,000 and subtract $15,000 |
Example answer | |
The text answer at the back is $10 different due to rounding difference in their table method. | |
Settlement Value |
Problem 5
Problem 5. | |
Yearly payment owed | |
How much principal is reduced | the first year |
Principal | |
first year interest | |
Principal paid | |
Problem 6
Example from text |