need this to be redone

I need this to be done by tonight… please help me out!!!

Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper

Running Head:

PREDICTIVE SALES REPORT

1

PREDICTIVE REPORT

Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper

8

Predictive Sales Report

BUS

3

08: Statistics for Managers

Author’s Name

Institutional affiliation

PREDICTIVE SALES REPORT

A retail store has recently hired you as a consultant to advice on economic conditions. One important indicator that the retail store is concerned about is the unemployment rate. The retail store has found that an increase in the unemployment rate will cause a lack of consumer spending in their stores. Retail stores use the unemployment rate to estimate how much inventory to keep at their stores, which is important in maintaining cost effectiveness. In this consultant role you will apply calculations and research to create a predictive sales report.

Part I

 

Year

Jan

F

eb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

Annual

1

9

4

8

3.4

3.8

4

3.9

3.

5

3.

6

3.6

3.9

3.8

3.

7

3.8

4

3.7

5

1949

4.3

4.7

5

5.3

6.1

6.2

6.7

6.8

6.6

7.9

6.4

6.6

6.05

1950

6.5

6.4

6.3

5.8

5.5

5.4

5

4.5

4.4

4.2

4.2

4.3

5.2

1

1951

3.7

3.4

3.4

3.1

3

3.2

3.1

3.1

3.3

3.5

3.5

3.1

3.28

1952

3.2

3.1

2.9

2.9

3

3

3.2

3.4

3.1

3

2.8

2.7

3.03

1953

2.9

2.6

2.6

2.7

2.5

2.5

2.6

2.7

2.9

3.1

3.5

4.5

2.93

1954

4.9

5.2

5.7

5.9

5.9

5.6

5.8

6

6.1

5.7

5.3

5

5.59

1955

4.9

4.7

4.6

4.7

4.3

4.2

4

4.2

4.1

4.3

4.2

4.2

4.37

1956

4

3.9

4.2

4

4.3

4.3

4.4

4.1

3.9

3.9

4.3

4.2

4.13

1957

4.2

3.9

3.7

3.9

4.1

4.3

4.2

4.1

4.4

4.5

5.1

5.2

4.30

1958

5.8

6.4

6.7

7.4

7.4

7.3

7.5

7.4

7.1

6.7

6.2

6.2

6.84

1959

6

5.9

5.6

5.2

5.1

5

5.1

5.2

5.5

5.7

5.8

5.3

5.45

1960

5.2

4.8

5.4

5.2

5.1

5.4

5.5

5.6

5.5

6.1

6.1

6.6

5.54

1961

6.6

6.9

6.9

7

7.1

6.9

7

6.6

6.7

6.5

6.1

6

6.69

1962

5.8

5.5

5.6

5.6

5.5

5.5

5.4

5.7

5.6

5.4

5.7

5.5

5.57

19

63

5.7

5.9

5.7

5.7

5.9

5.6

5.6

5.4

5.5

5.5

5.7

5.5

5.

64

1964

5.6

5.4

5.4

5.3

5.1

5.2

4.9

5

5.1

5.1

4.8

5

5.16

19

65

4.9

5.1

4.7

4.8

4.6

4.6

4.4

4.4

4.3

4.2

4.1

4

4.51

1966

4

3.8

3.8

3.8

3.9

3.8

3.8

3.8

3.7

3.7

3.6

3.8

3.79

1967

3.9

3.8

3.8

3.8

3.8

3.9

3.8

3.8

3.8

4

3.9

3.8

3.84

1968

3.7

3.8

3.7

3.5

3.5

3.7

3.7

3.5

3.4

3.4

3.4

3.4

3.56

1969

3.4

3.4

3.4

3.4

3.4

3.5

3.5

3.5

3.7

3.7

3.5

3.5

3.49

1970

3.9

4.2

4.4

4.6

4.8

4.9

5

5.1

5.4

5.5

5.9

6.1

4.98

1971

5.9

5.9

6

5.9

5.9

5.9

6

6.1

6

5.8

6

6

5.95

1972

5.8

5.7

5.8

5.7

5.7

5.7

5.6

5.6

5.5

5.6

5.3

5.2

5.60

1973

4.9

5

4.9

5

4.9

4.9

4.8

4.8

4.8

4.6

4.8

4.9

4.86

1974

5.1

5.2

5.1

5.1

5.1

5.4

5.5

5.5

5.9

6

6.6

7.2

5.64

1975

8.1

8.1

8.6

8.8

9

8.8

8.6

8.4

8.4

8.4

8.3

8.2

8.48

1976

7.9

7.7

7.6

7.7

7.4

7.6

7.8

7.8

7.6

7.7

7.8

7.8

7.70

1977

7.5

7.6

7.4

7.2

7

7.2

6.9

7

6.8

6.8

6.8

6.4

7.05

1978

6.4

6.3

6.3

6.1

6

5.9

6.2

5.9

6

5.8

5.9

6

6.07

1979

5.9

5.9

5.8

5.8

5.6

5.7

5.7

6

5.9

6

5.9

6

5.85

1980

6.3

6.3

6.3

6.9

7.5

7.6

7.8

7.7

7.5

7.5

7.5

7.2

7.18

1981

7.5

7.4

7.4

7.2

7.5

7.5

7.2

7.4

7.6

7.9

8.3

8.5

7.62

1982

8.6

8.9

9

9.3

9.4

9.6

9.8

9.8

10

.1

10.4

10.8

10.8

9.71

1983

10.4

10.4

10.3

10.2

10.1

10.1

9.4

9.5

9.2

8.8

8.5

8.3

9.60

1984

8

7.8

7.8

7.7

7.4

7.2

7.5

7.5

7.3

7.4

7.2

7.3

7.51

1985

7.3

7.2

7.2

7.3

7.2

7.4

7.4

7.1

7.1

7.1

7

7

7.19

1986

6.7

7.2

7.2

7.1

7.2

7.2

7

6.9

7

7

6.9

6.6

7.00

1987

6.6

6.6

6.6

6.3

6.3

6.2

6.1

6

5.9

6

5.8

5.7

6.18

1988

5.7

5.7

5.7

5.4

5.6

5.4

5.4

5.6

5.4

5.4

5.3

5.3

5.49

1989

5.4

5.2

5

5.2

5.2

5.3

5.2

5.2

5.3

5.3

5.4

5.4

5.26

1990

5.4

5.3

5.2

5.4

5.4

5.2

5.5

5.7

5.9

5.9

6.2

6.3

5.62

1991

6.4

6.6

6.8

6.7

6.9

6.9

6.8

6.9

6.9

7

7

7.3

6.85

1992

7.3

7.4

7.4

7.4

7.6

7.8

7.7

7.6

7.6

7.3

7.4

7.4

7.49

1993

7.3

7.1

7

7.1

7.1

7

6.9

6.8

6.7

6.8

6.6

6.5

6.91

1994

6.6

6.6

6.5

6.4

6.1

6.1

6.1

6

5.9

5.8

5.6

5.5

6.10

1995

5.6

5.4

5.4

5.8

5.6

5.6

5.7

5.7

5.6

5.5

5.6

5.6

5.59

1996

5.6

5.5

5.5

5.6

5.6

5.3

5.5

5.1

5.2

5.2

5.4

5.4

5.41

1997

5.3

5.2

5.2

5.1

4.9

5

4.9

4.8

4.9

4.7

4.6

4.7

4.94

1998

4.6

4.6

4.7

4.3

4.4

4.5

4.5

4.5

4.6

4.5

4.4

4.4

4.50

1999

4.3

4.4

4.2

4.3

4.2

4.3

4.3

4.2

4.2

4.1

4.1

4

4.22

2000

4

4.1

4

3.8

4

4

4

4.1

3.9

3.9

3.9

3.9

3.97

2001

4.2

4.2

4.3

4.4

4.3

4.5

4.6

4.9

5

5.3

5.5

5.7

4.74

2002

5.7

5.7

5.7

5.9

5.8

5.8

5.8

5.7

5.7

5.7

5.9

6

5.78

2003

5.8

5.9

5.9

6

6.1

6.3

6.2

6.1

6.1

6

5.8

5.7

5.99

2004

5.7

5.6

5.8

5.6

5.6

5.6

5.5

5.4

5.4

5.5

5.4

5.4

5.54

2005

5.3

5.4

5.2

5.2

5.1

5

5

4.9

5

5

5

4.9

5.08

2006

4.7

4.8

4.7

4.7

4.6

4.6

4.7

4.7

4.5

4.4

4.5

4.4

4.61

2007

4.6

4.5

4.4

4.5

4.4

4.6

4.7

4.6

4.7

4.7

4.7

5

4.62

2008

5

4.9

5.1

5

5.4

5.6

5.8

6.1

6.1

6.5

6.8

7.3

5.80

2009

7.8

8.3

8.7

9

9.4

9.5

9.5

9.6

9.8

10

9.9

9.9

9.28

2010

9.8

9.8

9.9

9.9

9.6

9.4

9.5

9.5

9.5

9.5

9.8

9.3

9.63

2011

9.1

9

8.9

9

9

9.1

9

9

9

8.9

8.6

8.5

8.93

2012

8.3

8.3

8.2

8.1

8.2

8.2

8.2

8.1

7.8

7.9

7.8

7.8

8.08

2013

7.9

 

 

 

 

 

 

 

 

 

 

 

 

In any statistical analysis, the average results contribute to a greater accuracy where predictions have to be made or decisions have to be made. For example, from the above information, the last column in the table represents the average early unemployment rated by months. The two sample from different years proves the concept.

 Year

Jan

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

Annual

1948

3.4

3.8

4

3.9

3.5

3.6

3.6

3.9

3.8

3.7

3.8

4

3.75

Feb

Sum of monthly rate divided by number of months per year results in the monthly rate for that year (3.4+3.8+4+3.9+3.5+3.6+3.6+3.9+3.8+3.7+3.8+4)/12 = 3.75

 Year

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

Annual

1958

5.8

6.4

6.7

7.4

7.4

7.3

7.5

7.4

7.1

6.7

6.2

6.2

6.84

 (5.8+6.4+6.7+7.4+7.4+7.3+7.5+7.4+7.1+6.7+6.2+6.2)/12 = 6.84


Below is the

Scatter Plot that includes

the fitted linear regression equation.


Usage of the Data Analysis Tools in Excel :

 

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Intercept

-61.4859

19.9236

-3.0861

0.0030

-101.3001

-21.6717

Year

0.0340

0.0101

3.3776

0.0013

0.0139

0.0541

You can see from the table above that the fitted linear regression equation is Y = B0 + B1*X, Y being the unemployment rate and X is year. B1 is the regression coefficient of Y on X and Bo is the intercept.

The best fitted linear regression equation is given as:

Unemployment rate = -61.4859 + 0.0340 * Year.

We also have the information from the above table as the p-values for both the coefficients (which is intercept and year) are lesser than 0.05, it is noted that both the regression coefficients are significantly different from zero. Therefore, the best fitted linear regression equation is to be predicted with unemployment rate based on year as:

Unemployment rate = -61.4859 + 0.0340 * Year.

The Y-intercept is B0 = -61.4859.

The equation in slope intercept form is given as:

Unemployment rate = 0.0340* Year – 61.4859


Actual Sufficiency of the Model:

 

26.4258

0.0013

 

 

 

ANOVA

df

SS

MS

F

Significance F

Regression

1

26.4258

11.4079

Residual

63

145.9367

2.3165

Total

64

172.3625

Information from the ANOVA table listed above, the significance F value (0.0013) is lesser than the 0.05, and the fitted model is competent to the assumed data. This means the regression coefficients are significantly different from zero.

Simple Linear Regression Analysis

Regression Statistics

Multiple R

0.3916

R Square

0.1533

Adjusted R Square

0.1399

Standard Error

1.5220

Observations

65

Looking at the Simple Linear Regression Analysis table above, we see that the R-square value is 0.1533. It specifies that 15.33 % of the variance in unemployment rate is explained by the independent variable year. So the remainder of the variation is possible due to some other independent variables or due to some unplanned reason.


Prediction of the unemployment rate for 2016:

The prediction of the unemployment rate for the year 2016 based on the fitted linear regression line will be calculated as:

Unemployment rate = 0.0340* 2016 – 61.4859 = 7.03.

Residuals are calculated in Residuals sheet of excel file.

The most updated unemployment rate (that is for the year 2013) is

Unemployment rate = 0.0340* 2013 – 61.4859 = 6.93.

The regression coefficient is 0.0340 which is positive; it specifies that every year the unemployment rate increases and/or grows.

Therefore we see that as the unemployment rate increases, it will cause a dearth of consumer spending in retail stores.

Any individual that has been laid off from his or her work temporarily or any individual who has been unemployed for a period of four weeks or more contributes to unemployment rates calculation. For those who do not search for work, they do not contribute to unemployment rate. When the number of people searching for work and not employed at the same time are in high volumes, the retail store owners will experience declined numbers based on less spending budgets, funds and capabilities. As the unemployment rate raises the retail stores will see more consumers willing and able to spend. In 2009 the United States the sales for retail took a spike overall by 37%, (Rogers, 2009). In 2009 is when it took its major peak. Our projections and predictions show that the unemployment rate will stay at or around the 8% mark throughout 2013. This shows a consistency of this rate and can give retail stores a more balance on what to expect and business planning for the budgeted year.

            In 2011 article developers felt that putting up new centers as long as the unemployment rates where in the high single digits would not be good (Misonzhnik,2011). If developers do not want to put up new shops, this can hinder growth of new retailers and also introduction of new vendors. This also serves as a plus for existing retailers who do not have to worry about competitors and can have all business located in one shop.

References

Bureau of labor statistics.(n.d.). Retrieved from website: http://www.bls.gov/lau/

Misonzhnik, E. (2011). Building Tension: The pace of retail development remains anemic. Retail Traffic, 40(2), 42-44.

Rogers, D. (2009). RECENT TRENDS IN AMERICAN RETAILING.Retail Digest, 50-53.

Tanner, D., & Youssef – Morgan, C. (2013).Statistics for Managers. San Diego, CA: Bridgepoint Education, Inc.

Scatter Plot that includes

Average Unepmployment Rate

Annual

y = 0.034x – 61.486
r² = 0.1533

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 3.75 6.05 5.2083333333333393 3.2833333333333363 3.0250000000000004 2.9250000000000003 5.5916666666666694 4.3666666666666671 4.1249999999999938 4.3 6.8416666666666694 5.45 5.5416666666666714 6.6916666666666664 5.5666666666666673 5.6416666666666684 5.1583333333333332 4.5083333333333391 3.7916666666666665 3.8416666666666663 3.5583333333333331 3.4916666666666667 4.9833333333333414 5.95 5.6000000000000005 4.8583333333333334 5.6416666666666684 8.4750000000000068 7.6999999999999975 7.0500000000000007 6.0666666666666664 5.8500000000000005 7.1750000000000007 7.6166666666666671 9.7083333333333215 9.6 7.5083333333333391 7.1916666666666664 7 6.1750000000000007 5.4916666666666707 5.2583333333333382 5.6166666666666663 6.8499999999999988 7.4916666666666716 6.9083333333333394 6.1000000000000005 5.5916666666666694 5.4083333333333412 4.9416666666666709 4.5 4.2166666666666694 3.9666666666666663 4.7416666666666707 5.7833333333333412 5.9916666666666716 5.5416666666666714 5.0833333333333393 4.6083333333333334 4.6166666666666671 5.8 9.2833333333333332 9.625 8.9250000000000025 8.0750000000000028

The Year

Average Unemployment Rate

BLS Data Series

s:

to

Year

1948

3.6 3.9 3.8

3.8 4.0

6.6

6.4

5.0

4.2 4.3

3.7 3.4 3.4

3.1 3.1

3.5 3.5 3.1

3.2 3.1

2.9 3.0 3.0 3.2 3.4 3.1 3.0

2.9

2.6 2.7

2.5 2.6 2.7 2.9 3.1 3.5 4.5

5.9

5.8

6.1 5.7 5.3 5.0

4.9 4.7

4.7 4.3 4.2 4.0 4.2

4.3 4.2 4.2

4.0 3.9 4.2 4.0 4.3 4.3 4.4 4.1 3.9 3.9 4.3 4.2

4.2 3.9 3.7 3.9 4.1 4.3 4.2 4.1 4.4 4.5

5.2

5.8 6.4 6.7

7.4

7.4

6.7 6.2 6.2

6.0 5.9 5.6 5.2 5.1 5.0 5.1 5.2 5.5 5.7 5.8 5.3

5.2

5.4 5.2 5.1 5.4 5.5 5.6 5.5 6.1 6.1 6.6

6.6

6.9

7.1 6.9 7.0 6.6 6.7 6.5 6.1 6.0

5.8 5.5 5.6 5.6 5.5 5.5 5.4 5.7 5.6 5.4 5.7 5.5

5.7 5.9 5.7 5.7 5.9 5.6 5.6 5.4 5.5 5.5 5.7 5.5

5.6 5.4 5.4 5.3 5.1 5.2 4.9 5.0 5.1 5.1 4.8 5.0

4.9 5.1 4.7 4.8 4.6 4.6 4.4 4.4 4.3 4.2 4.1 4.0

4.0 3.8 3.8 3.8 3.9 3.8 3.8 3.8 3.7 3.7 3.6 3.8

3.9 3.8 3.8 3.8 3.8 3.9 3.8 3.8 3.8 4.0 3.9 3.8

3.7 3.8 3.7 3.5 3.5 3.7 3.7 3.5 3.4 3.4 3.4 3.4

3.4 3.4 3.4 3.4 3.4 3.5 3.5 3.5 3.7 3.7 3.5 3.5

3.9 4.2 4.4 4.6 4.8 4.9 5.0 5.1 5.4 5.5 5.9 6.1

5.9 5.9 6.0 5.9 5.9 5.9 6.0 6.1 6.0 5.8 6.0 6.0

5.8 5.7 5.8 5.7 5.7 5.7 5.6 5.6 5.5 5.6 5.3 5.2

4.9 5.0 4.9 5.0 4.9 4.9 4.8 4.8 4.8 4.6 4.8 4.9

5.1 5.2 5.1 5.1 5.1 5.4 5.5 5.5 5.9 6.0 6.6

8.1

8.8 8.6

8.4 8.4

7.9

7.7 7.4 7.6

7.8 7.6 7.7 7.8 7.8

7.5 7.6 7.4 7.2 7.0 7.2 6.9 7.0 6.8 6.8 6.8 6.4

6.4 6.3 6.3 6.1 6.0 5.9 6.2 5.9 6.0 5.8 5.9 6.0

5.9 5.9 5.8 5.8 5.6 5.7 5.7 6.0 5.9 6.0 5.9 6.0

6.3 6.3 6.3 6.9 7.5 7.6 7.8 7.7 7.5 7.5 7.5 7.2

7.5 7.4 7.4 7.2 7.5 7.5 7.2 7.4 7.6 7.9 8.3

8.6

9.0

9.8

10.8

10.4 10.4

10.1 10.1 9.4

8.8 8.5 8.3

7.8 7.8 7.7 7.4 7.2 7.5 7.5 7.3 7.4 7.2 7.3

7.3 7.2 7.2 7.3 7.2 7.4 7.4 7.1 7.1 7.1 7.0 7.0

6.7 7.2 7.2 7.1 7.2 7.2 7.0 6.9 7.0 7.0 6.9 6.6

6.6 6.6 6.6 6.3 6.3 6.2 6.1 6.0 5.9 6.0 5.8 5.7

5.7 5.7 5.7 5.4 5.6 5.4 5.4 5.6 5.4 5.4 5.3 5.3

5.4 5.2 5.0 5.2 5.2 5.3 5.2 5.2 5.3 5.3 5.4 5.4

5.4 5.3 5.2 5.4 5.4 5.2 5.5 5.7 5.9 5.9 6.2 6.3

6.4 6.6 6.8 6.7 6.9 6.9 6.8 6.9 6.9 7.0 7.0 7.3

7.3 7.4 7.4 7.4 7.6 7.8 7.7 7.6 7.6 7.3 7.4 7.4

7.3 7.1 7.0 7.1 7.1 7.0 6.9 6.8 6.7 6.8 6.6 6.5

6.6 6.6 6.5 6.4 6.1 6.1 6.1 6.0 5.9 5.8 5.6 5.5

5.6 5.4 5.4 5.8 5.6 5.6 5.7 5.7 5.6 5.5 5.6 5.6

5.6 5.5 5.5 5.6 5.6 5.3 5.5 5.1 5.2 5.2 5.4 5.4

5.3 5.2 5.2 5.1 4.9 5.0 4.9 4.8 4.9 4.7 4.6 4.7

4.6 4.6 4.7 4.3 4.4 4.5 4.5 4.5 4.6 4.5 4.4 4.4

4.3 4.4 4.2 4.3 4.2 4.3 4.3 4.2 4.2 4.1 4.1 4.0

4.0 4.1 4.0 3.8 4.0 4.0 4.0 4.1 3.9 3.9 3.9 3.9

4.2 4.2 4.3 4.4 4.3 4.5 4.6 4.9 5.0 5.3 5.5 5.7

5.7 5.7 5.7 5.9 5.8 5.8 5.8 5.7 5.7 5.7 5.9 6.0

5.8 5.9 5.9 6.0 6.1 6.3 6.2 6.1 6.1 6.0 5.8 5.7

5.7 5.6 5.8 5.6 5.6 5.6 5.5 5.4 5.4 5.5 5.4 5.4

5.3 5.4 5.2 5.2 5.1 5.0 5.0 4.9 5.0 5.0 5.0 4.9

4.7 4.8 4.7 4.7 4.6 4.6 4.7 4.7 4.5 4.4 4.5 4.4

4.6 4.5 4.4 4.5 4.4 4.6 4.7 4.6 4.7 4.7 4.7 5.0

5.0 4.9 5.1 5.0 5.4 5.6 5.8 6.1 6.1 6.5 6.8 7.3

7.8 8.3

9.0 9.4 9.5 9.5 9.6 9.8

9.9

9.8 9.8 9.9 9.9 9.6 9.4 9.5 9.5 9.5 9.5 9.8 9.3

9.0 8.9 9.0 9.0 9.1 9.0 9.0 9.0 8.9 8.6 8.5

8.3 8.3 8.2 8.1 8.2 8.2 8.2 8.1 7.8 7.9 7.8 7.8

2013 7.9
Labor Force Statistics from the Current Population Survey
Original Data Value
Series Id: LNS14000000
Seasonally Adjusted
Series title: (Seas) Unemployment Rate
Labor force status: Unemployment rate
Type of data: Percent or rate
Age: 16 years and over
Year 1948 2013
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual
3.4 3.8 4.0 3.9 3.5 3.6 3.7
1949 4.3 4.7 5.0 5.3 6.1 6.2 6.7 6.8 6.6 7.9 6.4
1950 6.5 6.3 5.8 5.5 5.4 4.5 4.4 4.2
1951 3.1 3.0 3.2 3.3
1952 2.9 2.8 2.7
1953 2.6 2.5
1954 4.9 5.2 5.7 5.9 5.6 6.0
1955 4.6 4.1
1956
1957 5.1
1958 7.4 7.3 7.5 7.1
1959
1960 4.8
1961 6.9 7.0
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974 7.2
1975 8.1 8.6 8.8 9.0 8.4 8.3 8.2
1976 7.7 7.6 7.8
1977
1978
1979
1980
1981 8.5
1982 8.9 9.3 9.4 9.6 9.8 10.1 10.4 10.8
1983 10.3 10.2 9.5 9.2
1984 8.0
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009 8.7 10.0 9.9
2010
2011 9.1
2012

&CBureau of Labor Statistics&L&R
&C&LSource: Bureau of Labor Statistics&RGenerated on: February 13, 2013 (09:47:02 PM)

Still stressed from student homework?
Get quality assistance from academic writers!

Order your essay today and save 25% with the discount code LAVENDER