MatLab homework – root solving

I need someone to complete this Matlab assignment, answering the questions by pasting the results (i.e. graphs etc.) on a word document. It baisically just involves solving equations for a quantum well.

Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper

 

The format of the code does not really matter because I don’t need to submit the code, only the results. Howerver, I would like to see the matlab files for my own learning purpouse.

 

P.S. This is homework 3, but one question may refer to homework 2. I have completed that, so I included the files for reference

Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper

  

The assignment is attached.

Hope someone can help!

Simulationon the Nanoscale ENG-M03: Assignment 3

General information

In the following you will be asked to complete a set of tasks using MATLAB. To help you

accomplish these tasks many questions will include MATLAB code (blue text), this can be

directly copied and pasted into MATLAB. Each question will carry a mark which is indicated

at the questions end. For each question document your answers, be that a numerical or

graphical output in an associated word document, which will be submitted as part of your

continual assessment at the of the semester.

1. Infinite quantum

well

In this exercise we will develop a suite of programs to calculate the energy eigen-values

and eigen-vectors within both a infinite and finite quantum well system. To achieve this

we will be utilising the root finding and bracketing algorithms developed in Lab 2.

The simplest illustration of the basic postulates of quantum mechanics is the case of a

particle confined to a one-dimensional infinite quantum well of width 2a say. The

impenetrable walls/sides of the well/box can be modelled by the potential:

( ) | |

Or (1)

( ) | |

Using the above potential Schrödinger’s equation may be expressed in the following form for

the interval| | as

( )

( )

(2)

Which has solutions of the form:

( ) ( ) ( )

(3)

Where A and B are integration constants and

(4)

As the sides of the box are infinite we require ( ) for | | Recalling from lectures

that the wavefunction, ( ), must be everywhere continuous except where the potential

has an infinite discontinuity, hence, at we have

( ) ( )
( ) ( )

} (5)

Infinite quantum well indicating the first three eigenvalues (dotted lines)

and corresponding eigen-functions (full line) for a well width of 50Å.

There are two non-trivial sets of solutions of equations 5. Either ( ) or

( ) . In either case

(6)

with or respectively. This is the crucial step because it is where the

energy levels appear. By imposing the boundary conditions (5) on the solution (3) we

immediately restrict the parameter to the discrete set of values (6). Substituting (6) into

(4) yields

(7)

The energy E, which is a continuous parameter in classical mechanics, is here ‘quantised’ to

certain discrete energy levels.

More useful information is provided by the wavefunction (3), if we determine the

integration constants A and B by the normalisation procedure discussed in lectures, i.e. for n

even we require:

∫| ( )|

∫ (

)

(8)

From which we find

and similarly

, yielding

( )
(

)

( )
(

)

} (9)

(a) Create a function that evaluates equation 7 for user-defined and

(b) Create a function that evaluates equation 9 for user-defined and

(c) For n = 1:4 and well widths = 1 and 10nm, calculate the eigenvalues and plot the

corresponding eigenvectors.

[4 marks]

Finite Potential Well

The quantised energy levels for motion of carriers in the -direction within the well are

obtained by solving Schrödinger’s equation for electrons in both the well and the barrier

regions of the structure.

For the well region

( )

( )

(10)

And for the barrier regions

( )

( )

( )

(11)

V is the height of the potential well and ( ) is the dependent part of the envelope

function, ( ) ( ) ( ) of the Schrodinger wavefunction of the

electron.

The electron wavefunctions are:

in the well in the barrier

odd solutions    zkAzF we sin    zkBzF be  exp
even solutions    zkCzF we cos    zkBzF be  exp

where
2

*

2 Emk
ww

 and   2*2 EVmk bb  with
*

w
m and

*

b
m the effective

masses of the carriers at the band edge within the quantum well and the barrier

respectively.

Graph showing the three lowest eigenenergy solutions to a 1eV deep, 50Å wide

quantum well. The eigenenergies are shown as the dotted lines, whereas full

lines denote their corresponding wavefunctions.

At the junction of the well and barrier the carrier wave-function and its derivative must be

continuous:

(12)

Assuming the well interfaces are located at and where is then the width of the

well

Solutions:

Then if we are at the interface and use the boundary conditions in (12) we may find

odd solutions of the form:


( )

(13)

And even solutions of the form:


( )

(14)

(a) Write two functions to evaluate equations (13) and (14) and plot these functions

between the energies 0 and 0.3eV to suppress the y-axis to -4:4. Use

and
, where

kg.

(b) Write a script that calls either the bisection or Newton algorithms in conjunction

with the bracketing routine of Lab 2 to locate the first two odd (equation (13)) and

even solutions (equation (14)) within a finite quantum well with the following

parameters:

i. Depth, eV and width, .

ii. Depth, eV and width, .

iii. Depth, eV and width, .

iv. Depth, eV and width, .

[16 marks]

MATLAB/Assignment 2/Bracketing (Multiple Roots) (4)/Bisection method bracketing/Thumbs.db

MATLAB/Assignment 2/Bracketing (Multiple Roots) (4)/Newton method bracketing/Thumbs.db

MATLAB/Assignment 2/Bracketing (Multiple Roots) (4)/Thumbs.db

MATLAB/Assignment 2/Thumbs.db

MATLAB/Assignment 2/Newton method – intersection of two functions (3)/Thumbs.db

MATLAB/Assignment 2/Bisecting method (1)/Thumbs.db

MATLAB/Assignment 2/Newton Method (2)/Thumbs.db

MATLAB/Assignment 1/Images/Thumbs.db

MATLAB/Assignment 1/Nano Sim Assignment 1 x

Simulation on the Nanoscale ENG-M03: Assignment 1

Using a script file (I)

clear
format short g
N = 100;
x = linspace(-pi,pi,N)’;
y = sin(x);
figure(1), plot(x,y)

Defining a function (II)

function y = sin_scale (x,sf)
y = sin(x./sf);
end
sf = 0.1;
y = sin_scale(x,sf);
figure(2), plot(x,y)

sf=[0.1 0.5 2];
N_sf = numel(sf);
sin_array = zeros(N,N_sf);
for ndx = 1: N_sf
sin_array(:,ndx) = sin_scale(x,sf(ndx));
end
figure(3),plot(x,sin_array)

Numerical Differentiation

Function

function dydx = Deriv(x,y)
N = numel(x);
dydx = zeros(N-1,1);
h= x(2)-x(1);
for ndx = 1 : N-1
dydx(ndx,:) =(y(ndx+1)-y(ndx))/h;
end

Script
clear
format short g
N=100;
x = linspace (-pi,pi,N)’;
y = cos(x);
dydx = Deriv(x,y);
xd = x(1:N-1);
figure(4), plot(x,y,xd,dydx,x,-sin(x))

Numerical Integration

1. Trapezoidal Method

a) Integral
b) g=integral(@f,a,b,’ArrayValued’,true)

Error = ((I-g)/g).*100 = 23.37%

2. Composite Trapezium Rule

a) function [ aproxInt ] = aproxInt(n,a,b)
function y = sumFx
y = 0;
for k = 1:n-1
y = y + feval(@f,(a+(k.*((b-a)/n))));
end
end
Totx=sumFx;
aproxInt = 0.5.*((b-a)/n).*((feval(@f,a))+(feval(@f,b))+(2.*(Totx)));
end
b) I= aproxInt(n,a,b)= 1.00002056192951
Error = ((I-g)/g).*100 = 0.00205619295078341

c) I1 = aproxInt2(5,1,2) = 0.695634920634921

I2 = aproxInt2(50,1,2) = 0.693172179310195

I3 = aproxInt2(100,1,2) = 0.693153430481824
d) g1 = log(2);
e1 = ((I1-g1)/g1).*100 = 0.358905026918763
e2 = ((I2-g1)/g1).*100 = 0.00360655730140557
e3 = ((I3-g1)/g1).*100 = 0.000901673130050152
e) number of sub-intervals needed to achieve an accuracy to 6 d.p., n=277 (adjusted manually)

3. Simpson’s Rule

MATLAB/Assignment 2/Nanosim assignment 2 x

Simulation on the Nanoscale ENG-M03: Assignment 2

1. Bisection Method

2. Newton Method

3. Newton Method – Intersection of Two Functions

This script only takes 3 iterations to calculate the root. Newton’s method by intersection of two functions is much faster than the bisection method, but encounters problems unless the root is well defined (e.g. the wrong root may be found).

4. Bracketing (Newton Method)

4. Bracketing (Bisection Method)

MATLAB/Assignment 1/Composite Trapezium Rule(5)/aproxInt.m
%5a)
function [ aproxInt ] = aproxInt(n,a,b)
function y = sumFx
y = 0;
for k = 1:n-1
y = y + feval(@f,(a+(k.*((b-a)/n))));
end
end
Totx=sumFx;
aproxInt = 0.5.*((b-a)/n).*((feval(@f,a))+(feval(@f,b))+(2.*(Totx)));

end

MATLAB/Assignment 1/Composite Trapezium Rule(5)/aproxInt2.m
function [ aproxInt2 ] = aproxInt2(n,a,b)
function y = sumGx
y = 0;
for k = 1:n-1
y = y + feval(@g,(a+(k.*((b-a)/n))));
end
end
Totx=sumGx;
aproxInt2 = 0.5.*((b-a)/n).*((feval(@g,a))+(feval(@g,b))+(2.*(Totx)));

end

MATLAB/Assignment 2/Bisecting method (1)/bisect.m
function root = bisect(f,a,b,imax,tol)
% Input: f function to be evaluated
% a,b interval limits
% imax iteration maximum
% tol convergence criterion
% Output: root position of the root
% initialise parameters, i.e.
x1=a;
f1=feval(f,x1);
x3=b;
f3=feval(f,x3);
% CHECK: verify that there is indeed a root in the interval [a b].
if f1*f3>0
error(‘No root in the specified interval’)
end

for ndx=1:imax
x2=(x3+x1)/2;
f2=feval(f,x2); %etc…
% Find which half interval contains root – i.e. if-else construction
% test for convergence i.e. d < tol % CHECK: Excessive iterations if f1*f2<0 % Root is in left half, so d=(x2+x1)/2; f3=f2; x3=x2; else % Root is in right half, so d=(x2+x3)/2; f1=f2; x1=x2; end d=abs(x1-x2); if d0
error(‘No root in the specified interval’)
end

for ndx=1:imax
x2=(x3+x1)/2;
f2=feval(f,x2); %etc…
% Find which half interval contains root – i.e. if-else construction
% test for convergence i.e. d < tol % CHECK: Excessive iterations if f1*f2<0 % Root is in left half, so d=(x2+x1)/2; f3=f2; x3=x2; else % Root is in right half, so d=(x2+x3)/2; f1=f2; x1=x2; end d=abs(x1-x2); if db
error(‘b must be greater than a’)
end
h=(b-a);
I=h*(feval(f,a)+feval(f,b))/2;
end

MATLAB/Assignment 1/Lab_1 Q 1-4/trap1.m
function int = trap1(f,a,b)
%Input – f is the integrand input as a string ‘f’
% – a and b are upper and lower limits of integration
%Output – s is the trapezoidal rule sum, equation 3
if a>b
error(‘b must be greater than a’)
end
h=(b-a);
int=h*(feval(f,a)+feval(f,b))/2;
end

MATLAB/Assignment 1/lab1_trap2 (5)/trap2.m
function I = trap2(f,a,b)
%UNTITLED2 Summary of this function goes here
% Detailed explanation goes here
if a>b
error(‘b must be greater than a’)
end
N=100;
I=((b-a)/N)*(0.5)*(feval(f,a)+2*sum(f,i=1..(N-1))+feval(f,b);
end

MATLAB/Assignment 1/Simulation on the Nanoscale Lab 1

Simulation on the Nanoscale ENG-M03: Assignment 1

General information
In the following you will be asked to complete a set of tasks using MATLAB. To help you
accomplish these tasks many questions will include MATLAB code (blue text), this can be
directly copied and pasted into MATLAB. Each question will carry a mark which is indicated
at the questions end. For each question document your answers, be that a numerical or
graphical output in an associated word document, which will be submitted as part of your
continual assessment at the of the semester.

Lab. 1
The aim of this laboratory is to cover the basic set-up used throughout this and following
MATLAB (ML) exercises. First we will review the script-subroutine format of ML by
considering a simple example. Following this we will construct a suite of functions that able
to differentiate and integrate a user defined function numerically using MATLAB.

Using a script file (I)
In this first task we are simply going to plot a function using a script file.
(a) Open a MATLAB script file, save it to your personnel directory as lab1_sin.m. This
script will be used to call intrinsic and user-defined functions in ML.
(b) Type:

clear – clears all variables from the workspace
format short g – formats the outputted numerical data

(c) MATLAB has many ‘in-built’ functions that can be easily used; this task we will plot
the sine function over the interval [-π π].
(d) Define the vector/array/table x as:
N = 100;
x = linspace(-pi,pi,N)’; or as
x = (-pi:2*pi/(N-1):pi)’;
NB: the semi-colon suppresses output to the command window and the apostrophe
transposes the default column vector to a row vector.
(e) Use the following code to plot sin(x) as a function of x:
y = sin(x);
figure(1), plot(x,y)
[1 mark]

Defining a function (II)
A function or subroutine in any programming language is essentially a black-box operator –
i.e. you give the function some value and then it operates on that value and returns the
result of that operation. The sine function in the previous task is an example of this already
built-in to MATLAB. In this task we will define our own MATLAB function, which will scale the
argument given to the sine function, i.e. ⁄ , where a will be user defined.

(a) Open a MATLAB function file
(b) The function file is markedly different to the script file you previously opened and
will look something like:

function [ output_args ] = Untitled( input_args )
%UNTITLED Summary of this function goes here
% Detailed explanation goes here:

End

 The function starts with the word function and ends with the word end
 Untitled – is the default name of the function – the function name MUST be the same as
the name you save it has!!!
 Input arguments into the function are written in the curved brackets (separated by
commas) next the function name.
 Output arguments must be defined in both the body of the function and in the square
brackets next to the function declaration.

A simple example of a function:

function [ y1,y2 ] = multiply_10_and_100( x1,x2 )
% This function multiplies the first input argument by 10 and the second by 100 then return
their values in y1 and y2 respectively.

y1 = x1×10;
y2 = x2×100;

end

(c) Save the above function as sin_scale.m – make sure you alter the function name to
reflect this change. If you do not do this MATLAB will underline the function name in
yellow.
(d) Modify the function so that you have 1 output and 2 input arguments, your new
function will look like:

function y = sin_scale (x,sf)

% Input: scalar or vector x, sf scale factor
% Output: scalar or vector containing corresponding sine values.
% y = sin(x); ML intrinsic sine function

y = sin(x./sf);

% The ‘.’ before an operator implies a vector/array operation

end

(e) Modify the script previously used in task 1 to plot sin(x) as a function of x, where we
scale x by 0.1.
sf = 0.1
y = sin_scale(x,sf);
figure(2), plot(x,y)
[1 mark]

(f) Using a ‘for loop’ plot the values of sine for the following values sf = [0.1 1 0.5 2]; of
the scale factor. Use the intrinsic ‘zeros’ (type: ‘help zeros’ in the command
window) function to set-aside space for the values of sin(x) for the three values of
scale factor. Use the following code in your script file to help you.

sf=[0.1 0.5 2]; % Scale factor values in an array named sf
N_sf = numel(sf); % Number of elements within sf (ML intrinsic
% function)

sin_array = zeros(N,N_sf);
%Initialise an array of zeros to store data. % Notice the size of the array is predicted by
%the number of values, N and the number of scale factors to be analysed, N_sf.

for ndx = 1: N_sf
sin_array(:,ndx) = sin_function_sf(x,sf(ndx));
end
figure(3),plot(x,sin_array)
title([‘A Sine fn; limits = [-pi pi]; Scale factors = ‘,num2str(sf)])

N.B. you can name your variables as you like, but be careful not to use a ML intrinsic
function. To check this type ‘help variable_name’ if ‘function is not found’ is displayed
you are okay to use the variable name, else change the name.
[2 marks]

Numerical Differentiation
Using the forward difference technique (FDT) we may differentiate a continuous function
over a specified domain. Here, we will consider differentiating the cosine function over the
domain [-pi pi]. Using the FDT the derivative of a function may be expressed as

i
ii
i
h
xfxf
xf
)()(
)(‘
1


 [1]
where i is the index along the x-direction and hi is the step-size between xi+1 and xi; here, we
assume this is a constant.
(a) Define the following input vector x = linspace(-pi,pi,N)’; where N=100; in a script file.
(b) Calculate y = cos(x) – cosine is another built-in MATLAB function.
(c) Define function that inputs both the x and y vectors.
(d) Using equation 1 estimate the cosine derivative.
(e) Plot your answer against the intrinsic ML function ‘-sin’ over the same interval.

[2 marks]

Numerical Integration
In this section we develop some numerical techniques to solve definite integrals of the form
dxxfI
b
a
 )( [2]
The evaluation of such integrals is usually called quadrature and we will consider two
techniques, namely, the Trapezoidal and Simpson methods.

1. Trapezoidal Method

The area under the curve f(x) from x =a to x = b is approximated by the area beneath a
straight line drawn between the points f(xa,fa) and f(xb,fb). the area below this line is then an
approximation to the integral I, i.e.
))((
2
1
abffI
ba
 [3]
This can be evaluated using the following code:
function int=trap1(f,a,b)
%Input – f is the integrand input as a string ‘f’
% – a and b are upper and lower limits of integration
%Output – s is the trapezoidal rule sum, equation 3

if a>b
error(‘b must be greater than a’)
end
h=(b-a);
int=h*(feval(f,a)+feval(f,b))/2;

a) Write a function dxxxI 
2/
0
)sin(

and evaluate using trap1.
[2 marks]

b) Calculate the analytic value and compare with the numerical answer, i.e. calculate
the percentage error.
[2 marks]

2. Composite Trapezium Rule
Improvement of the accuracy of this technique can be obtained by simply subdividing the
interval of interest into a large number of smaller intervals. For say n regularly spaced
intervals the integral may be approximated by the following expression:

)2(
2
1 1
1
b
n
i
ian
fffxI  


[4]

Where nabx
n
/)(  and
i
f is the function evaluated at each of the interior points, i.e.
)(
ni
xiaxff  .

a) Write a ML function to evaluate equation 4.
b) Calculate the integral in the previous section for 100 intervals and compare with the
analytic value, i.e. determine the percentage error.
c) Create a function ⁄ and evaluate it over the interval , with the
following number of intervals 5, 50, 100.
[3 marks]
d) Compare each result with the analytic answer i.e. ln(2), i.e. put in a table.
[1 marks]
e) Determine the number of sub-intervals needed to achieve an accuracy to 6 decimal
places.
[2 mark]

3. Simpson’s Rule
An improvement to the composite trapezoidal rule can be achieved by simply replacing the
straight line segments across each interval by parabolic segments i.e. use Simpson’s rule.
From the lecture notes the approximation to the integral across the interval [a b] can be
expressed as follows:
)24(
3
1 1
1
1
1
b
n
onlyeven
i
i
n
onlyodd
i
ian
ffffxI  




[5]
a) Write a ML function to evaluate equation 5.
b) Calculate the value of the integral for ⁄ and evaluate it over the interval
, with the following number of intervals 5, 50, 100.
[3 marks]
c) Compare each result with the analytic answer i.e. ln(2), i.e. put in a table.
[1 marks]
d) Determine the number of sub-intervals needed to achieve accuracy to 6 decimal
places.
[2 mark]

MATLAB/Assignment 2/Simulation on the Nanoscale Lab 2

Simulation on the Nanoscale ENG-M03: Assignment 2

General information
In the following you will be asked to complete a set of tasks using MATLAB. To help you
accomplish these tasks many questions will include MATLAB code (blue text), this can be
directly copied and pasted into MATLAB. Each question will carry a mark which is indicated
at the questions end. For each question document your answers, be that a numerical or
graphical output in an associated word document, which will be submitted as part of your
continual assessment at the of the semester.

Lab. 2
The aim of this lab is to develop a suite of codes that are able to locate the roots of a user
defined function i.e. 0)( xf . You will write scripts to call the bisection algorithm and the
Newton-Raphson algorithm discussed in lectures to find the roots of 4 functions. Finally, you
will use these two methods to locate the multiple roots associated with a fifth function. You
will need to develop a strategy that allows you to (i) approximate the root positions and (ii)
apply both bisection and Newton methods using the approximate root positions to find the
roots to a specified accuracy.

Root Solving
1. Bisection Method

Suppose there is one root within the interval [a b] and that the function f(x) is continuous in
this interval. By defining ax 
1
and bx 
3
as the left and right ends of the interval and
2/)(
312
xxx  as the mid-point. We can determine which half-interval the root resides
by the following if else construction:

if f1*f2<0 % Root is in left half, so d=(x2+x1)/2; f3=f2; x3=x2; else % Root is in right half, so d=(x2+x3)/2; f1=f2; x1=x2; end i.e. if f1*f2>0 implies both are either positive or negative and the root lies in the right
interval. In either case there is no crossing between x1 and x2. If f1*f2<0 the f(x) has changed sign between x1 and x2, and thus the root is in the left half. Convergence can then be determined by the magnitude of the variable d i.e. if told  convergence is met, where the tolerance, tol = 1e-6 say. Pseudo-code: Bisection Method function root = bisect(f,a,b,imax,tol) % Input: f function to be evaluated % a,b interval limits % imax iteration maximum % tol convergence criterion % Output: root position of the root % initialise parameters, i.e. x1=a; f1=feval(f,x1); x3=b; f3=feval(f,x3); % CHECK: verify that there is indeed a root in the interval [a b]. if f1*f3>0
error(‘No root in the specified interval’)
end

% Begin iteration loop i.e. for ndx =1:imax or while(ndx tol
if df == 0
error(‘Problem’)
end
count=count+1;
% calculate equation 4
fprintf(‘Iteration – %i,\t Error – %g\n’,count,norm(fr))
% CHECK: Excessive iterations
end

(a) Using the above pseudo-code, construct a Newton function in MATLAB.
(b) Create the function ( ) (

) and its corresponding derivative
( ) Initial guess
(c) Create the function ( ) ( ) and its corresponding derivative ( )
Initial guess
(d) Create a script function to call the Newton function, in the call to the function
include the parameters:
i. f – a string variable – the value of the file name of the functions defined in
(b) or (c)
ii. – initial guess at root location
iii. tol – accuracy to which the root is to be found – 1e-6
iv. imax – the maximum number of iterations – 20
(e) For each of the functions (b), (c) plot the function over the desired interval and
indicate the position of the root with a ‘o’ marker, e.g. figure(1);plot(x,y,’-
‘,x_root,y_root,’o’), also plot out the value of the root on the title of the graph, e.g.
title(str2num(x_root)).
[4 marks]

3. Newton’s Method – Intersection of two functions
As an example of a more complicated problem utilizing Newton’s method, we will next solve
for the roots of the function:
( ) (

) ( )
which may be written as
(

) ( )
Hence, a root of equation ( ) will correspond to the points of intersection of the two
functions on the left and right hand sides of equation ( ).

(a) Create a script function to call the Newton function, in the call to the function
include the parameters:
a. f – a string variable – the value of the file name of the functions defined in
(b) or (c)
b. – initial guess at root location
c. tol – accuracy to which the root is to be found – 1e-6
d. imax – the maximum number of iterations – 20

(b) Plot these two functions in equation ( ) for the range . It should be
clear from this plot that there are many such intersection points in this interval; we
will only consider the root around . Note that an initial guess greater than 4.5
would result in the wrong root being found. Indicate the position of the root with a
‘o’ marker, e.g. figure(1);plot(x,y,’-‘,x_root,y_root,’o’), also plot out the value of the
root on the title of the graph, e.g. title(str2num(x_root)).

(c) Use your Newton algorithm to determine the root around 4 to a tolerance of 1e-10,
How many iterations are needed to achieve this accuracy? Please comment.
[4 marks]

4. Bracketing (Multiple Roots)
As can be seen above many functions have multiple roots. There many methods available to
determine all the roots of a function. Here we consider the method of bracketing. This
method basically consists of evaluating a given function over a given interval and then
determining and storing the location of the roots within that interval. These stored values
can then act as seeds for a root finding algorithms you have developed.

(a) Develop a bracketing routine that will approximately determines the intersection
points of equation ( ) for the interval [4 10]. Use x = linspace(4,10,100); to
evaluate the function in the first instance.
(b) Use both the Bisection and Newton routines to determine the position for all roots
in this interval to a tolerance of 1e-6.
(c) Plot equation ( ) for the range , Indicating the position of all roots with
a ‘o’ marker
[8 marks]

MATLAB/Assignment 2/Bracketing (Multiple Roots) (4)/Bisection method bracketing/Bisect roots img

MATLAB/Assignment 2/Bisecting method (1)/Bisect_fig_1

MATLAB/Assignment 2/Bisecting method (1)/Bisect_fig_2

MATLAB/Assignment 1/Images/Defining a function (II) (e)

MATLAB/Assignment 1/Images/Defining a function (II) (f)

MATLAB/Assignment 2/Bracketing (Multiple Roots) (4)/Newton method bracketing/Multiple roots plot

MATLAB/Assignment 2/Newton method – intersection of two functions (3)/Newton.intesect_fig1

MATLAB/Assignment 2/Newton Method (2)/Newton_fig1

MATLAB/Assignment 2/Newton Method (2)/Newton_fig2

MATLAB/Assignment 1/Images/Numerical Differentiation

MATLAB/Assignment 1/Images/Using a script file (I)

Still stressed from student homework?
Get quality assistance from academic writers!

Order your essay today and save 25% with the discount code LAVENDER