Masters Degree in Antibiotic Discussion

DQ 10. Create your initial post on the DQ 10 Discussion Board in response to the following questions:Each student should post an example of a protein synthesis inhibitor (30S or 50S inhibitor) that was NOT discussed in the lecture videos. EACH POSTING SHOULD BE DIFFERENT, FIRST COME-FIRST SERVED. You may post a note to “claim” an antibiotic before beginning your research for your complete posting. You may post an example from the non-textbook readings, an analog of one of the antibiotics which was not discussed in class, or an example from another reliable source. The post should include the following:Antibiotic nameUse (or “in development”)Mechanism of action (specific)Current status (e.g. “not used medically – why?, toxicity?, resistance?” or “currently in development – what makes it better than current drugs?”)Information source(s) Course  Overview  
Advanced  Topics  -­‐  An4bio4cs  
Professor:  Gregory  Caputo  
Office:  130C  Science  Hall  
Phone:  256-­‐5453  
Email:  caputo@rowan.edu  
OFFICE  HOURS:    by  appointment  
   
   
   
Professor:  Lark  Perez  
Office:  301B  Science  Hall  
Phone:  256-­‐4502  
Email:  perezla@rowan.edu  
OFFICE  HOURS:  by  appointment  
 
Course  outline  
1
3
Introduc8on  to  and  overview  of  market  and  industry  demands;  General  aspects  of  
an8bio8c  drug  development
Introduc8on  to  bacterial  physiology;  an8bacterial  methods,  an8microbial  
resistance
History  of  an8bio8cs,  Intro  to  classes  of  an8bacterials  
4
β-­‐lactams,  vancomycin;  Mechanism  of  cell  wall  inhibitors
5
Inhibitors  of  protein  synthesis;  Aminoglycosides  and  Streptomycin;  Tetracyclines;  
Mechanism  of  30S  transla8onal  inhibitors.  
Inhibitors  of  Protein  Synthesis,  con8nued.  Chloramphenicol  and  Macrolides;  
Mechanism  of  50S  transla8onal  inhibitors.  
 Synthe8c  approaches  to  sulfonamides,  trimethoprim;  Mechanism  of  metabolic  
inhibitors;  Synthe8c  approaches  to  quinolones  and  rifamycin;  Mechanism  of  DNA/
RNA  polymerase  inhibitors
2
6
7
8
Alterna8ve  Approaches  to  an8microbial  development  -­‐  Pep8des  &  
proteins;  Polymers  &  mime8cs;  Phage  Therapy;  Quorum  Sensing  
Inhibitors
Texts  and  Reference  Material  
• Book:  Claudio  O.  Gualerzi,  Le4zia  Brandi,  AUlio  FabbreU,  Cynthia  L.  
Pon  (Eds.)  An4bio4cs:  Targets,  Mechanisms  and  Resistance,  Wiley-­‐
VCH,  2014.  (recommended,  not  required)  
• Assigned  Journal  ar8cles  
– All  should  be  accessible  via  Rowan’s  library  subscrip4ons  
– Inaccessible  ar4cles  will  be  provided  
 
• Other  texts:  
– Nelson  &  Cox,  Lehninger  Principles  of  Biochemistry,  5th  edi=on,  W.H.  
Freeman  Company    
– Brown,  Foote,  Iverson,  and  Anslyn  Organic  Chemistry,  Brooks  Cole,  
2004/2010;  
– Willey,  Sherwood  and  Woolverton,  PrescoD’s  Microbiology,  McGraw-­‐
Hill  
Quizzes  
• Roughly  once  per  week  
• Mul4ple  choice  format  online  
• Due  by  Friday  of  each  week  
Exams  
• Each  exam  covers  ~50%  of  the  course  material  
• Second  exam  is  cumula4ve  with  extra  
emphasis  on  the  second  half  of  the  course  
• Exams  are  online,  mul4ple  choice.  
• Exam  must  be  completed  by  Friday,  July  24,  
11:59PM  
Paper  
• In  depth  discussion  of  an  an4bio4c  that  is  ON  the  
market  or  in  clinical  trials  
• Should  include:  
– Discovery  
– Synthesis/purifica4on  
– Mechanism  of  ac4on  
– Applica4ons  
– Market  analysis  
• Topic  should  be  approved  by  6/22/2015  (week  4)  
Paper  
• 2500  WORD  limit.  
• Single  spaced    
• Font:  12,  Times  New  Roman  
• No  limit  on  figures/illustra4ons  
• Fully  referenced  using  An4microbial  Agents  &  
Chemotherapy  format  (references  do  not  
count  in  word  limit).  
 
An#microbial  Market  and  
Industry    
An#bio#cs  –  The  need  
• An#bio#cs  are  one  of  the  most  commonly  
prescribed  forms  of  medica#on  
• Designed  to  fight  BACTERIAL  infec#ons  
– Note,  there  are  an#virals,  an#fungals,  etc.  however  
the  term  ANTIBIOTICS  generally  refers  to  an#bacterial  
agents  
• Drugs  designed  to  kill  bacteria  are  effec#vely  
useless  against  non-­‐bacterial  targets  
• The  term  “an#bio#c”  was  coined  in  1942  by  
Selman  Waksman  
What  do  an#bio#cs  fight?  
• Bacteria.      
• Before  we  talk  about  that,  a  quick  word  on  
nomenclature  
– Bacterial  naming  uses  a  BINOMIAL  system  
– A  species  name  has  2  parts:  
• Genus  name  
• Species  epithet  
Staphylococcus  Aureus  
S.  Aureus  
What  do  an#bio#cs  fight?  
• Pertussis  aka  whooping  cough  (Bordetella  pertussis)  
• Bacterial  Pneumonia  (Klebsiella  pneumoniae,  
Streptococcus  pneumoniae,  among  others.)  
• Plague  (Yersinia  pes:s)  
• Chlamydia  (Chlamydia  trachoma:s)  
• Lyme  Disease  (Borrelia  Burgdorferi)  
• Typhoid  fever  (Salmonella)  
• Wound-­‐site  infec#ons  (numerous)  
• Lots  more!  
Early  history  of  An#bio#cs  
• Greeks  and  Indians  used  molds  and  other  plants  to  
treat  infec#ons.  
• In  Greece  and  Serbia,  moldy  bread  was  tradi#onally  
used  to  treat  wounds  and  infec#ons.  
• Warm  soil  was  used  in  Russia  by  peasants  to  cure  
infected  wounds.  
• Sumerian  doctors  gave  pa#ents  beer  soup  mixed  with  
turtle  shells  and  snake  skins.  
• Babylonian  doctors  healed  the  eyes  using  a  mixture  of  
frog  bile  and  sour  milk.  
• Sri  Lankan  army  used  oil  cake  (sweetmeat)  to  serve  
both  as  desiccant  and  an#bacterial  
More  modern  findings  
1640  England  
1870  England  
1871  England  
1875  England  
1877  France  
1897  France  
1928  England  
1932  Germany  
John  Parkington  recommended  using  mold  for  treatment  in  his  
book  on  pharmacology  
Sir  John  Scoa  Burdon-­‐Sanderson  observed  that  culture  fluid  
covered  with  mould  did  not  produce  bacteria  
Joseph  Lister  experimented  with  the  an#bacterial  ac#on  on  human  
#ssue  on  what  he  called  Penicillium  glaucium  
John  Tyndall  explained  an#bacterial  ac#on  of  the  Penicillium  
fungus  to  the  Royal  Society  
Louis  Pasteur  postulated  that  bacteria  could  kill  other  bacteria  
(anthrax  bacilli)  
Ernest  Duchesne  healed  infected  guinea  pigs  from  typhoid  using  
mould  (Penicillium  glaucium)  
Sir  Alexander  Fleming  discovered  enzyme  lysozyme  and  the  
an#bio#c  substance  penicillin  from  the  fungus  Penicillium  notatum  
Gerhard  Domagk  discovered  Sulfonamidochrysoidine  (Prontosil  )  
Alexander  Fleming  
• Scogsh  physician  with  a  specific  interest  in  
microbial  infec#ons  
• Served  as  a  baalefield  doctor  during  WWI  
which  further  drove  him  to  study  an#bio#cs  
• Credited  for  discovering  penicillin,  a  
compound  produced  by  mold  that  kills  
bacteria  
• Nobel  Prize  in  Physiology  or  Medicine  1945  
“One  some#mes  finds  what  one  is  not  
looking  for.”    
Selman  Waksman  
• Biochemist/microbiologist  at  Rutgers  
• His  group  discovered  several  an#bio#cs:  
ac#nomycin,  clavacin,  streptothricin,  
streptomycin,  grisein,  neomycin,  fradicin,  
candicidin,  candidin.  
• Streptomycin  and  neomycin  are  widely  used  
• Nobel  Prize  in  Physiology  or  Medicine  1945  
So  why  are  we  even  talking  about  this?  
• An#bio#cs  are  one  of  the  most  ubiquitously  
prescribed  medicines  in  the  world.  
Figure 1
Figure 2
The Lancet Infectious Diseases 2014 14, 742-750DOI: (10.1016/S1473-3099(14)70780-7)
Transla#on  –  big  bu$ine$$  
• “The  an#bio#cs  market  generated  sales  of  US
$42  billion  in  2009  globally,  represen#ng  46%  
of  sales  of  an#-­‐infec#ve  agents  (which  also  
include  an#viral  drugs  and  vaccines)  and  5%  of  
the  global  pharmaceu#cal  market”  
So  why  are  we  even  talking  about  this?  
• An#bio#cs  are  one  of  the  most  ubiquitously  
prescribed  medicines  in  the  world.  
• But  it’s  not  infinite  
• Some  bacteria  are  insensi#ve  to  certain  
an#bio#cs  by  nature  
• Some  microorganisms  can  develop  
RESISTANCE.  
Oh….  
• We’re  outnumbered  
– Es#mates  put  ~  5×1030  bacteria  on  Earth  (only  
8×109  people)  
– There  are  10  bacteria  in  your  intes#nes  for  every  1  
of  your  cells.  
• They’re  faster  than  us  
– Bacteria  can  replicate  in  as  liale  as  20  minutes  
– 1  cell  infected  with  influenza  will  produce  ~20  
new  flu  viruses  11h  later  (~  30  minutes  per  virus)  
Well,  at  least  we  know  how  to  
discover  drugs  
• Yes,  but  not  so  fast.  
• For  decades,  major  pharmaceu#cal  companies  
abandoned  their  an#bio#c  pipelines.  
• The  CO$T  of  developing  an  an#bio#c  was  
greater  than  the  profit  margin,  especially  since    
– most  are  covered  by  insurance    
– emerging  resistance  could  curtail  usefulness  of  a  
given  drug  
And  the  resistance  is  coming  
• Exis#ng  an#bio#cs  are  becoming  obsolete  
• Surveillance  indicates  more  and  more  strains  
are  becoming  resistant  to  “blockbuster”  or  
“last-­‐line”  an#bio#cs  
Summary  
• An#bio#cs  have  been  used  in  various  forms  
throughout  history  
• The  modern  study  of  an#bio#cs  took  off  in  the  
last  100  years  
• Current  an#bio#cs  are  becoming  obsolete  due  
to  resistance  
• The  pipeline  is  nearly  dry  because  of  business  
+  resistance  issues  
References  





hap://dx.doi.org/10.1016/S1473-­‐3099(14)70780-­‐7  
Tcichemicals.com    
drugs.com  
doi:10.1038/nrd3267  
IMS  Health.  IMS  MIDAS  (2009).  
Drug  Discovery  
With  an  emphasis  on  Antibiotics  
caputo@rowan.edu  
Drug  Discovery  
• Process  by  which  new  candidate  
medications  are  identified  
• Can  stem  from  natural  sources  or  laboratory  
created  molecules  
• Direct  ties  to  patient  health  but  also  a  huge  
driver  of  biomedical  research  
So,  how  do  we  discover  drugs?  
Natural  Products  
• Many  current  drugs  were  discovered  by  
analyzing  natural  products  
• These  can  be  direct  extracts  from  biological  
materials  OR  synthetic  replicas  
Natural  Products  
• Many  current  drugs  were  discovered  by  
analyzing  natural  products  
• These  can  be  direct  extracts  from  biological  
materials  OR  synthetic  replicas  
So,  how  do  we  discover  drugs  now?  
• Academic  and  industrial  R&D  
– R&D  =  Research  &  Development  
• Two  philosophical  approaches  
– Identify  a  specific  target/disease/condition  and  
rationally  design  systems  to  target  
– Develop  molecular  libraries  and  broadly  test  for  
activity  using  High  Throughput  Screening  (HTS)  
 
Known  Target  Approach  
• Requires  a  thorough  understanding  of  HOW  
the  disease  works  and  WHAT  goes  wrong  to  
cause  it  
Known  Target  Approach  
• Requires  a  thorough  understanding  of  HOW  
the  disease  works  and  WHAT  goes  wrong  to  
cause  it  
• Usually  requires  a  combination  of  chemistry,  
biochemistry,  cell  biology,  and  physiology  to  
make  informed  decisions  in  development  
High  Throughput  Screening  
Approach  
• Requires  huge  libraries  of  compounds  
• Requires  access  to  a  variety  of  cell/tissue  
reporter  systems  
• Often  done  using  automation  
High  Throughput  Screening  
Approach  
• Requires  huge  libraries  of  compounds  
• Requires  access  to  a  variety  of  cell/tissue  
reporter  systems  
• Often  done  using  automation  
• Actually  a  fishing  expedition.  
• Requires  extensive  follow  up  
experimentation  
HTS  Video  –  26:14  
Let’s  not  forget  in  silico  screening  
• Virtual  screening/design  can  aid  both  
approaches  
• Two  approaches  
– Ligand  Based  –  build  a  model  of  a  target  based  
on  what  binds  to  it  
– Structure  Based  –  build  ligands  based  on  the  
structure  of  the  target  
Ligand  Based  
?  
Structure  Based  
How  does  virtual  screening  work?  
• Based  on  interaction  ENERGY  
• Atomic  and  molecular  interactions  
determine  if  a  given  interaction  is  favorable  
or  unfavorable  
– Electrostatics  (charges)  
– Van  der  waals  (size  of  molecules/atoms)  
– Hydrogen  bonds  
MD  Video  
MD  Video  2  
OK,  so  what’s  the  problem?  
• If  we  know  HOW  to  discover  drugs,  then  
why  do  we  still  get  sick?  
OK,  so  what’s  the  problem?  
• If  we  know  HOW  to  discover  drugs,  then  
why  do  we  still  get  sick?  
– Long,  costly  approval  process  
– Side  effects  
– Efficacy  differences  based  on  genetics  
– Resistance!  
Clinical  Trials  
• Necessary,  but  costly  
• Designed  to  ensure  safety  &  efficacy  of  
drugs  while  also  identifying  unknown  
complicating  factors  
• EXTENSIVELY  regulated  by  the  FDA  
Clinical  Trials  
• Broken  down  into  phases  
– Phase  0:  Drug  discovery  and  “pre-­‐clinical”  
– Phase  1:  Screening  for  safety  
– Phase  2:  Establishing  the  efficacy  of  the  drug,  
usually  against  a  placebo  
– Phase  3:  Final  confirmation  of  safety  and  efficacy  
– Phase  4:  Sentry  studies  during  sales  
• Drugs  are  “approved  after  Phase3,  but  still  
monitored  
Clinical  Trials  
• From  1997-­‐2011,  drug  companies  spent  $802  
BILLION  on  clinical  trials.    
• For  139  drugs.  
• Translates  to  $5.8  BILLION  per  drug  (just  on  
the  trials!)  
• “Phase  III  trials  now  represent  about  40  
percent  of  pharmaceutical  companies’  R&D  
expenditures”  
It’s  not  perfect  
Adderall  XR  
2005  
Risk  of  stroke[1]  The  ban  was  later  lifted  because  the  death  rate  among  those  taking  Adderall  XR  was  determined  to  be  no  greater  than  those  not  taking  Adderall.  
Alatrofloxacin  
2006  
Liver  toxicity;  serious  liver  injury  leading  to  liver  transplant;  death.[2]  
1979  
Vasculitis,  Rash.[3]  
1995  
Not  approved  in  the  US,  withdrawn  in  France  in  1994[4]  and  the  rest  of  the  market  in  1995  because  of  rare  but  serious  hepatotoxicity.[3][5]  
Alclofenac  
Alpidem  (Ananxyl)  
Alosetron  (Lotronex)  
2000  
Serious  gastrointestinal  adverse  events;  ischemic  colitis;  severe  constipation.[2]  Reintroduced  2002  on  a  restricted  basis[citation  needed]  
Althesin  (=Alphaxolone  amineptine  +  Alphadolone)  
1984  
Anaphylaxis.[3]  
Amineptine  (Survector)  
1999  
Hepatotoxicity,  dermatological  side  effects,  and  abuse  potential.[6]  Reason:  
Aminopyrine  
1999  
Abuse;  dependence;  severe  acne.[3]  
Amobarbital  
1980  
Self  poisoning.[3]  
Amoproxan  
1970  
Dermatologic  and  ophthalmic  toxicity.[3]  
Anagestone  acetate  
1969  
Animal  carcinogenicity.[3]  
Antrafenine  
1984  
Unspecific  experimental  toxicity.[3]  
Aprotinin  (Trasylol)  
2008  
Increased  risk  of  death.[2]  
Ardeparin  (Normiflo)  
2001  
Not  for  reasons  of  safety  or  efficacy.[7]  
Astemizole  (Hismanal)  
1999  
Fatal  arrhythmia[2][3]  
Azaribine  
1976  
Thromboembolism.[3]  
Bendazac  
1993  
Hepatotoxicity.[3]  
Benoxaprofen  
1982  
Liver  and  kidney  failure;  gastrointestinal  bleeding;  ulcers.[2][3]  
Benzarone  
1992  
Hepatitis.[3]  
Benziodarone  
1964  
Jaundice.[3]  
Beta-­‐ethoxy-­‐lacetanilanide  
1986  
Renal  toxicity,  animal  carcinogenicity.[3]  
Bezitramide  
2004  
Fatal  overdose.[8]  
Bithionol  
1967  
Dermatologic  toxicity.[3]  
Broazolam  
1989  
Animal  carcinogenicity.[3]  
Bromfenac  
1998  
Severe  hepatitis  and  liver  failure  (some  requiring  transplantation).[2]  
Bucetin  
1986  
Renal  toxicity.[3]  
Buformin  
1978  
Metabolic  toxicity.[3]  
Bunamiodyl  
1963)  
Nephropathy.[9]  
Butamben  (Efocaine)(Butoforme)  
1964  
Dermatologic  toxicity;  psychiatric  Reactions.[3]  
Canrenone  
1986  
Animal  Carcinogenicity.[3]  
Cerivastatin  (Baycol,  Lipobay)  
2001  
Risk  of  rhabdomyolysis[2]  
Chlormadinone  (Chlormenadione)  
1970  
Animal  Carcinogenicity.[3]  
Chlormezanone  (Trancopal)  
1996  
Hepatotoxicity;  Steven-­‐Johnson  Syndrome;  Toxic  Epidermal  Necrolysis.[3]  
Chlorphentermine  
1969  
Cardiovascular  Toxicity.[3]  
Cianidanol  
1985  
Hemolytic  Anemia.[3]  
Cinepazide  
1987  
Agranulocytosis.[3]  
Cisapride  (Propulsid)  
2000  
Risk  of  fatal  cardiac  arrhythmias[2]  
Clioquinol  
1973  
Neurotoxicity.[3]  
Clobutinol  
2007  
Ventricular  arrhythmia,  QT-­‐prolongation.[10]  
Cloforex  
1969  
Cardiovascular  toxicity.[3]  
Clomacron  
1982  
Hepatotoxicity.[3]  
Clometacin  
1987  
Hepatotoxicity.[3]  
Co-­‐proxamol  (Distalgesic)  
2004  
Overdose  dangers.  
Cyclobarbital  
1980  
Self  poisoning.[3]  
Cyclofenil  
1987  
Hepatotoxicity.[3]  
Dantron  
1963  
Genotoxicity.[11]  
Dexfenfluramine  
1997  
Cardiac  valvular  disease.[3]  
Propoxyphene  (Darvocet/Darvon)  
2010  
Increased  risk  of  heart  attacks  and  stroke.[12]  
Diacetoxydiphenolisatin  
1971  
Hepatotoxicity.[3]  
Diethylstilbestrol  
1970s  
Risk  of  teratogenicity[citation  needed]  
Difemerine  
1986  
Multi-­‐Organ  toxicities.[3]  
Dihydrostreptomycin  
1970  
Neuropsychiatric  reaction.[3]  
Dilevalol  
1990  
Hepatotoxicity.[3]  
Dimazol  (Diamthazole)  
1972  
Neuropsychiatric  reaction.[3]  
Dimethylamylamine  (DMAA)  
1983  
Voluntarily  withdrawn  from  market  by  Lily.[13]:12  Reintroduced  as  a  dietary  supplement  in  2006;[13]:13  and  in  2013  the  FDA  started  work  to  ban  it  due  to  cardiovascular  problems[14]  
Dinoprostone  
1990  
Uterine  hypotonus,  fetal  distress.[3]  
Dipyrone(Metamizole)  
1975  
Agranulocytosis,  anaphylactic  reactions.[3]  
Dithiazanine  iodide  
1964  
Cardiovascular  and  metabolic  reaction.[3]  
Dofetilide  
2004  
Drug  intereactions,  prolonged  QT.[10]  
Drotrecogin  alfa  (Xigris)  
2011  
Lack  of  efficacy  as  shown  by  PROWESS-­‐SHOCK  study[citation  needed]  
Ebrotidine  
1998  
Hepatotoxicity.[3]  
Efalizumab  (Raptiva)  
2009  
Withdrawn  because  of  increased  risk  of  progressive  multifocal  leukoencephalopathy[10]  
Encainide  
1991  
Ventricular  arrhythmias.[2][3]  
Ethyl  carbamate  
1963  
Carcinogenicity.[15]  
Etretinate  
1989  
Withdrawn  U.S.  (1999).  Risk  for  birth  defects.[2][3]  
Exifone  
1989  
Hepatotoxicity.[3]  
Fen-­‐phen  (popular  combination  of  fenfluramine  and  phentermine)  
1997  
Cardiotoxicity  
Fenclofenac  
1984  
Cutaneous  reactions;  animal  carcinogenicity.[3]  
Fenclozic  acid  
1970  
Jaundice,  elevated  hepatic  enzymes.[3]  
Fenfluramine  
1997  
Cardiac  valvular  disease,  pulmonary  hypertension,  cardiac  fibrosis.[3][16]  
Fenoterol  
1990  
Asthma  mortality.[3]  
Feprazone  
1984  
Cutaneous  reaction,  multiorgan  toxicity.[3]  
Fipexide  
1991  
Hepatotoxicity.[3]  
Flosequinan  (Manoplax)  
1993  
Increased  mortality  at  higher  doses;  increased  hospitalizations.[2][3]  
Flunitrazepam  
1991  
Abuse.[3]  
Gatifloxacin  
2006  
Increased  risk  of  dysglycemia.[2]  
Gemtuzumab  ozogamicin  (Mylotarg)  
2010  
No  improvement  in  clinical  benefit;  risk  for  death.[2]  
Glafenine  
1984  
Anaphylaxis.[3]  
Grepafloxacin  (Raxar)  
1999  
Cardiac  repolarization;  QT  interval  prolongation.[2]  
Hydromorphone  (Palladone)]  
2005  
High  risk  of  accidental  overdose  when  administered  with  alcohol  
Ibufenac  
1968  
Hepatotoxicity,  jaundice.[3]  
Indalpine  
1985  
Agranulocytosis.[3]  
Indoprofen  
1983  
Animal  carcinogenicity,  gastrointestinal  toxicity.[3]  
Iodinated  casein  strophantin  
1964  
Metabolic  reaction.[3]  
Iproniazid  
1964  
Interactions  with  food  products  containing  tyrosine.[17]  
Isaxonine  phosphate  
1984  
Hepatotoxicity.[3]  
Isoxicam  
1983  
Stevens  johnson  syndrome.[3]  
Kava  Kava  
2002  
Hepatotoxicity.[10]  
Ketorolac  
1993  
Hemorrhage,  renal  Failure.[3]  
L-­‐tryptophan  
1989  
Eosinophilic  myalgia  syndrome.[3]  
Levamisole  (Ergamisol)  
1999  
Still  used  as  veterinary  drug;  in  humans  was  used  to  treat  melanoma  before  it  was  withdrawn  for  agranulocytosis  
Levomethadyl  acetate  
2003  
Cardiac  arrhythmias  and  cardiac  arrest.[2]  
Lumiracoxib  (Prexige)  
2007–2008  
Liver  damage  
Lysergic  acid  diethylamide  (LSD)  
1950s–1960s  
Marketed  as  a  psychiatric  drug;  withdrawn  after  it  became  widely  used  recreationally  
Mebanazine  
1975  
Hepatotoxicity,  drug  intereaction.[3]  
Methandrosteronolone  
1982  
Off-­‐label  abuse.[3]  
Methapyrilene  
1979  
Animal  carcinogenicity.[3]  
Methaqualone  
1984  
Withdrawn  because  of  risk  of  addiction  and  overdose[18][19]  
Metipranolol  
1990  
Uveitis.[3]  
Metofoline  
1965  
Unspecific  experimental  toxicity.[3]  
Mibefradil  
1998  
Fatal  arrhythmia,  drug  interactions.[2][3]  
Mibefradil  (Posicor)  
1998  
Withdrawn  because  of  dangerous  interactions  with  other  drugs  
Minaprine  
1996  
Convulsions.[3]  
Moxisylyte  
1993  
Necrotic  hepatitis.[3]  
Muzolimine  
1987  
Polyneuropathy.[3]  
Natalizumab  (Tysabri)  
2005–2006  
Nefazodone  
2007  
Voluntarily  withdrawn  from  U.S.  market  because  of  risk  of  Progressive  multifocal  leukoencephalopathy  (PML).  Returned  to  market  July,  2006.  
Branded  version  withdrawn  by  originator  in  several  countries  in  2007  for  hepatotoxicity.  Generic  versions  available.[20]  
Nialamide  
1974  
Hepatotoxicity,  drug  intereaction.[3]  
Nikethamide  
1988)  
CNS  Stimulation.[3]  
Nitrefazole  
1984)  
Hepatic  and  hematologic  toxicity.[3]  
Nomifensine  
1981-­‐1986  
Oxeladin  
1976  
Oxyphenbutazone  
1984-­‐1985  
Oxyphenisatin  (Phenisatin)  
Ozogamicin  
Hemolytic  Anemia,  hepatotoxicity,  serious  hypersensitive  reactions.[2][3]  
Carcinogenicity.[21]  
Bone  marrow  suppression,  Steven  Johnson  Syndrome.[3][22]  
Hepatotoxicity.[3]  
2010  
No  improvement  in  clinical  benefit;  risk  for  death;  veno-­‐occlusive  disease.[2]  
Pemoline  (Cylert)  
1997  
Withdrawn  from  U.S  in  2005.  Hepatotoxicity[23]  Reason:hepatotoxicity.[3]  
Pentobarbital  
1980  
Self  poisoning.[3]  
Pentylenetetrazol  
1982  
Withdrawn  for  inability  to  produce  effective  convulsive  therapy,  and  for  causing  seizures.  
Pergolide  (Permax)  
2007  
Risk  for  heart  valve  damage.[2]  
Perhexilene  
1985  
Neurologic  and  hepatic  toxicity.[3]  
Phenacetin  
1975  
An  ingredient  in  “A.P.C.”  tablet;  withdrawn  because  of  risk  of  cancer  and  kidney  disease[24]  Germany  Denmark,  U.K,  U.S,  others  Reason:  nephropathy.[3]  
Phenformin  and  Buformin  
1977  
Severe  lactic  acidosis[3]  
Phenolphthalein  
1997  
Carcinogenicity.[25]  
1966  
Hepatotoxicity,  drug  intereaction.[3]  
Phenylbutazone  
1985  
Off-­‐label  abuse,  hematologic  toxicity.[3]  
Phenylpropanolamine(Propagest,  Dexatrim)  
2000  
Hemorrhagic  stroke.[26][27]  
Pifoxime  (=Pixifenide)  
Phenoxypropazine  
1976  
Neuropsychiatric  reaction.[3]  
Pirprofen  
1990  
Gastrointestinal  toxicity.[3]  
Prenylamine  
1988  
Cardiac  arrythmia[28]  and  death.[3]  
Proglumide  
1989  
Respiratory  reaction.[3]  
Pronethalol  
1965  
Animal  carcinogenicity.[3]  
Propanidid  
1983  
Allergy.[3]  
Proxibarbal  
1998  
Immunoallergic,  thrombocytopenia.[3]  
Pyrovalerone  
1979  
Abuse.[3]  
Rapacuronium  (Raplon)  
2001  
Withdrawn  in  many  countries  because  of  risk  of  fatal  bronchospasm[2]  
Remoxipride  
1993  
Aplastic  anemia.[3]  
Rimonabant  (Acomplia)  
2008  
Risk  of  severe  depression  and  suicide[10]  
Rofecoxib  (Vioxx)  
2004  
Risk  of  myocardial  infarction  and  stroke[2]  
Rosiglitazone  (Avandia)  
2010  
Secobarbital  
Sertindole  
Risk  of  heart  attacks  and  death.  This  drug  continues  to  be  available  in  the  U.S.  
Self  poisoning.[3]  
1998  
Arrhythmia  and  sudden  cardiac  death[3][29]  
Sibutramine  (Reductil/Meridia)  
2010  
Increased  risk  of  heart  attack  and  stroke.[2]  
Sitaxentan  
2010  
Hepatotoxicity.[10]  
Sorivudine  
1993  
Drug  interaction  and  deaths.[citation  needed]  
Sparfloxacin  
2001  
QT  prolongation  and  phototoxicity.[2]  
Sulfacarbamide  
1988  
Dermatologic,  hematologic  and  hepatic  reactions  .[3]  
Sulfamethoxydiazine  
1988  
Unknown.[3]  
Sulfamethoxypyridazine  
1986  
Dermatologic  and  hematologic  reactions.[3]  
Suloctidyl  
1985  
Suprofen  
1986-­‐1987  
Tegaserod  (Zelnorm)  
2007  
Risk  for  heart  attack,  stroke,  and  unstable  angina.[2]  Was  available  through  a  restricted  access  program  until  April  2008.  
Temafloxacin  
1992  
Low  blood  sugar;  hemolytic  anemia;  kidney,  liver  dysfunction;  allergic  reactions[2][3]  
Temafloxacin  
1992  
Allergic  reactions  and  cases  of  hemolytic  anemia,  leading  to  three  patient  deaths.[2]  
Temazepam  (Restoril,  Euhypnos,  Normison,  Remestan,  Tenox,  Norkotral)  
1999  
Diversion,  abuse,  and  a  relatively  high  rate  of  overdose  deaths  in  comparison  to  other  drugs  of  its  group.  This  drug  continues  to  be  available  in  most  of  the  world  including  the  U.S.,  but  under  strict  controls.  
Terfenadine  (Seldane,  Triludan)  
1997-­‐1998  
Terodiline  (Micturin)  
1991  
Prolonged  QT  interval,  ventricular  tachycardia  and  arrhythmia.[3]  
2013  
Serious  cutaneous  reactions.[41]  
Tetrazepam  
Hepatotoxicity.[3]  
Flank  pain,  decreased  kidney  function.[2][3]  
Prolonged  QT  interval;  ventricular  tachycardia[2][3]  
Thalidomide  
1961  
Withdrawn  because  of  risk  of  teratogenicity;[42]  returned  to  market  for  use  in  leprosy  and  multiple  myeloma  under  FDA  orphan  drug  rules  
Thenalidine  
1960  
Neutropenia[3][43]  
Thiobutabarbitone  
1993  
Renal  insufficiency.[3]  
Thioridazine  (Melleril)  
2005  
Withdrawn  from  U.K.  market  because  of  cardiotoxicity[10]  
Ticrynafen(Tienilic  acid)  
1980  
Liver  toxicity  and  death.[3]  
Tolcapone  (Tasmar)  
1998  
Hepatotoxicity[3]  
Tolrestat  (Alredase)  
1996  
Severe  hepatotoxicity[3]  
Triacetyldiphenolisatin  
1971  
Hepatotoxicity.[3]  
Triazolam  
1991  
Psychiatric  adverse  drug  reactions,  amnesia.[3][44]  
Triparanol  
1962  
Cataracts,  alopecia,  ichthyosis.[3]  
Troglitazone  (Rezulin)  
2000  
Trovafloxacin  (Trovan)  
1999-­‐2001  
Valdecoxib  (Bextra)  
2004  
Risk  of  heart  attack  and  stroke.[2]  
Vincamine  
1987  
Hematologic  toxicity.[3]  
Xenazoic  acid  
1965  
Hepatotoxicity.[3]  
Ximelagatran  (Exanta)  
2006  
Hepatotoxicity[10]  
Zimelidine  
1983  
Hepatotoxicity[2]  
Risk  of  Guillain-­‐Barré  syndrome,  hypersensitivity  reaction,  hepatotoxicity[3][45][46]  banned  worldwide.[47]  
Zomepirac  
1983  
Anaphylactic  reactions  and  non-­‐fatal  allergic  reactions,  renal  failure[2][3]  
Withdrawn  because  of  risk  of  liver  failure[2][3]  
That  sucks.    So  why  bother?  
$$$$
(oh  yeah,  and  to  make  people  feel  better)  
Drug  &  Maker  
Abilify  
1  Otsuka  Pharmaceu>cal  Co.  
Nexium  
2  AstraZeneca  Pharmaceu>cals,  LP  
Humira  
3  AbbVie,  Inc.  
Crestor  
4  AstraZeneca  Pharmaceu>cals,  LP  
Cymbalta  
5  Eli  Lilly  and  Company  
Advair  Diskus  
6  GlaxoSmithKline  
Enbrel  
7  Amgen  Inc.  
Remicade  
8  Centocor  Ortho  Biotech,  Inc  
Copaxone  
9  Teva  Pharmaceu>cals    
Neulasta  
10  Amgen  Inc.  
Total  sales  
2013  Sales  
 $              6,293,801,000.00    
 $              5,974,550,000.00    
 $              5,428,479,000.00    
 $              5,195,930,000.00    
 $              5,083,111,000.00    
 $              4,981,108,000.00    
 $              4,585,701,000.00    
 $              3,980,556,000.00    
 $              3,603,958,000.00    
 $              3,472,969,000.00    
 $    48,600,163,000.00    
Drug  &  Maker  
Abilify  
1  Otsuka  Pharmaceu>cal  Co.  
Nexium  
2  AstraZeneca  Pharmaceu>cals,  LP  
Humira  
3  AbbVie,  Inc.  
Crestor  
4  AstraZeneca  Pharmaceu>cals,  LP  
Cymbalta  
5  Eli  Lilly  and  Company  
Advair  Diskus  
6  GlaxoSmithKline  
Enbrel  
7  Amgen  Inc.  
Remicade  
8  Centocor  Ortho  Biotech,  Inc  
Copaxone  
9  Teva  Pharmaceu>cals    
Neulasta  
10  Amgen  Inc.  
Total  sales  
2013  Sales  
 $              6,293,801,000.00    
 $              5,974,550,000.00    
 $              5,428,479,000.00    
 $              5,195,930,000.00    
 $              5,083,111,000.00    
 $              4,981,108,000.00    
 $              4,585,701,000.00    
 $              3,980,556,000.00    
 $              3,603,958,000.00    
 $              3,472,969,000.00    
 $    48,600,163,000.00    
Perspective:  Rowan’s  annual  operating  budget  is  ~$200  Million.    That  means  sales  from  
Abilify  could  have  supported  ~31  Rowan  Universities.  
Image  references  















https://suite.io/sharon-­‐falsetto/14w12e8  
http://www.acuhhs.com/wp-­‐content/uploads/bigstock-­‐Natural-­‐Medicine-­‐Still-­‐Life-­‐7509941.jpg  
http://traditionalmedicineinperuandes.weebly.com/herbal-­‐and-­‐plant-­‐knowledge.html  
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=https%3A%2F
%2Ffindingstrengthtostandagain.wordpress.com%2F2011%2F04%2F26%2Flessons-­‐from-­‐the-­‐willow-­‐tree
%2F&ei=mnr4VLDNFe_dsASyqoLQCg&bvm=bv.
87519884,d.cWc&psig=AFQjCNE3KrViKFYrIswp37rk1FIf_VgWzQ&ust=1425656855566964  
http://www.stopcoloncancernow.com/spread-­‐awareness/news/pain-­‐relievers-­‐may-­‐also-­‐relieve-­‐chances-­‐of-­‐developing-­‐colon-­‐cancer  
http://www.google.com/imgres?imgurl=http%3A%2F%2Fwww.jcda.ca%2Fuploads%2Fa35%2Ffig3.png&imgrefurl=http%3A%2F
%2Fwww.jcda.ca%2Farticle%2Fa35&h=486&w=600&tbnid=4KcM1EFuDvOi7M
%3A&zoom=1&docid=CXl_960SJbz_IM&ei=EK0BVMmbJ83JsQTqsIKACA&tbm=isch&client=firefox-­‐
a&ved=0CB8QMygBMAE&iact=rc&uact=3&dur=1539&page=1&start=0&ndsp=24  
http://scs.illinois.edu/htsf/  
http://henskelab.org/  
www.embl.de  
http://imaging.bme.ucdavis.edu/overview-­‐2/image-­‐gallery/  
http://www.lookfordiagnosis.com/mesh_info.php?term=High-­‐Throughput+Screening+Assays&lang=1  
www.slidegeeks.com/powerpoint-­‐slides/38596-­‐
business_funnels_powerpoint_templates_strategy_drug_discovery_process_ppt_slides/  
https://www.google.com/imgres?imgurl&imgrefurl=http%3A%2F%2Fwww.immunetrics.com%2Fapplications%2Fdrug-­‐
discovery.php&h=0&w=0&tbnid=4eLf7CXm1PnOEM&zoom=1&tbnh=152&tbnw=331&docid=CfqtYFTL3gcvVM&tbm=isch&client=fir
efox-­‐a&ei=y6wBVKO8I6K-­‐sQSQrYLACQ  
http://www.veteranstoday.com/2013/06/15/sarcomas-­‐and-­‐hope-­‐for-­‐veterans-­‐exposed-­‐to-­‐agent-­‐orange-­‐and-­‐du/clinical-­‐trials/  
http://www.drugs.com/stats/top100/2013/sales  
Bacterial  Physiology  
caputo@rowan.edu  
“So  it  is  said  that  if  you  know  your  
enemies  and  know  yourself,  you  can  
win  a  hundred  ba>les  without  a  
single  loss.”  
-­‐Sun  Tzu  
Know  your  enemy  
• Before  we  can  approach  developing  new  and  
be>er  anEbioEcs,  we  have  to  understand  the  
target  
• This  is  more  difficult  than  it  sounds  since  there  
are  so  many  bacteria  that  cause  disease  
What  ARE  bacteria?  
• Single  celled  organisms  
– Prokaryotes  
• Contain  all  the  “normal”  things  you’d  find  in  cells  
– Nucleic  Acids  (DNA,  RNA)  
– Proteins  (Enzymes,  acEvators,  etc)  
– Lipids  (cell  membrane)  
– Carbohydrates  (metabolism,  cell  surface)  
– Small  molecules  &  ions  (ATP,  Phosphates,  Calcium,  etc)  
• DO  NOT  have  organelles  
Fig. 1-3
1. Compartmentalization and metabolism  
Cells take up nutrients from the environment, transform them,
and release wastes into the environment. The cell is thus
an open system.  
Cell  
Environment  
2. Reproduction (growth)  
Chemicals from the environment are turned into new cells under
the genetic direction of preexisting cells.  
3. Differentiation  
Some cells can form new cell structures such as a spore, usually
as part of a cellular life cycle.  
Spore  
4. Communication  
Cells communicate or interact by means of chemicals that are
released or taken up.  
5. Movement  
Some cells are capable of self-propulsion.  
6. Evolution  
Cells contain genes and evolve to display new biological
properties. Phylogenetic trees show the evolutionary
relationships between cells.  
Ancestral
cell  
Distinct
species  
Distinct
species  
Fig. 1-3-1
1. Compartmentalization and metabolism  
Cells take up nutrients from the environment, transform them,
and release wastes into the environment. The cell is thus
an open system.  
Cell  
Environment  
2. Reproduction (growth)  
Chemicals from the environment are turned into new cells under
the genetic direction of preexisting cells.  
3. Differentiation  
Some cells can form new cell structures such as a spore, usually
as part of a cellular life cycle.  
Spore  
Fig. 1-3-2
4. Communication  
Cells communicate or interact by means of chemicals that are
released or taken up.  
5. Movement  
Some cells are capable of self-propulsion.  
6. Evolution  
Cells contain genes and evolve to display new biological
properties. Phylogenetic trees show the evolutionary
relationships between cells.  
Ancestral
cell  
Distinct
species  
Distinct
species  
Fig. 1-4
Coding
functions  
Machine
functions  
Energy conservation:  
ATP  
ADP + Pi  
DNA  
Replication  
Gene expression  
Transcription  
Metabolism: generation
of precursors of macromolecules (sugars, amino
acids, fatty acids, etc.)  
Enzymes: metabolic catalysts  
RNA  
Translation  
Proteins  
Reproduction (growth)  
Diversity  of  Bacteria  
• Come  in  various  shapes,  sizes,  and  colors  
Fig. 4-1
Coccus  
Rod  
Spirillum  
Spirochete  
Hypha  
Stalk  
Budding and
appendaged bacteria  
Filamentous bacteria  
Rhodospirillum  rubrum  
Serra%a  marcescens  
Pseudomonas  Aeruginosa  
Diversity  of  Bacteria  
• Come  in  various  shapes,  sizes,  and  colors  
• Nutrient  sources  vary  
• Growth  condiEons  vary  
Bacteria  are  EVERYWHERE  
• Soil,  water,  skin,  mucosa,  your  intesEnes,  
surfaces  in  public  places,  surfaces  in  your  home,  
etc.  
• A  single  teaspoon  of  topsoil  contains  about  a  
billion  bacterial  cells    
• Some  bacteria  can  grow  in  the  absence  of  oxygen  
(anaerobic)    
• Other  bacteria  can  grow  only  in  the  presence  of  
oxygen  (aerobic)  
• Some  can  switch  based  on  environmental  
condiEons  
Nutrient  Sources  
• Bacteria  are  not  closed  systems,  they  need  
external  input  for  nutriEon  and  growth  
• Some  bacteria  are  photosyntheEc  (o[en  
contain  pigments  to  absorb  light)  
Nutrient  Sources  
• Bacteria  are  not  closed  systems,  they  need  
external  input  for  nutriEon  and  growth  
• Some  bacteria  are  photosyntheEc  (o[en  
contain  pigments  to  absorb  light)  
Rhodobacter    
Nutrient  Sources  
• Bacteria  are  not  closed  systems,  they  need  
external  input  for  nutriEon  and  growth  
• Some  bacteria  are  photosyntheEc  (o[en  
contain  pigments  to  absorb  light)  
• Others  use  standard  uptake/import  of  
environmental  nutrients    
Fig. 4-13
Lac permease
(a symporter)
Sodium–proton antiporter
Phosphate symporter
Potassium uniporter
Sulfate symporter
Out
In
Fig. 5-15
STAGE I: PREPARATORY
REACTIONS
Glucose
Hexokinase
Glucose-6-
Isomerase
Fructose-6-
Phosphofructokinase
Fructose-1,6Aldolase
STAGE II: MAKING ATP
AND PYRUVATE
Glyceraldehyde-3-
2
Glyceraldehyde-3-P
dehydrogenase
2
Electrons
1,3-Bisphosphoglycerate-
2
2 NAD+
2 NADH
To
Stage III
Phosphoglycerokinase
2 3-Phosphoglycerate-
2 2-PhosphoglycerateEnolase
2 Phosphoenolpyruvate-
STAGE III: MAKING
FERMENTATION
PRODUCTS
Pyruvate kinase
2 PyruvateNADH
To Stage II
NAD+
Lactate
Pyruvate
dehydrogenase decarboxylase
Pyruvate:Formate lyase
Acetate-+ formateLactate-
Acetaldehyde
Alcohol
dehydrogenase
Formate
hydrogenlyase
H2 + CO2
NADH
NAD+
Ethanol
CO2
To Stage II
Fig. 5-22a
Pyruvate- (three carbons)
Key
C2
C4
C5
C6
Acetyl-CoA
Oxalacetate2-
Citrate3Aconitate3-
Malate2Isocitrate3Fumarate2-
Succinate2-
α–Ketoglutarate2Succinyl-CoA
Fig. 5-20
E0ʹ′ (V)
–0.22
0.0
Complex II
Fumarate
Succinate
CYTOPLASM
+0.1
Comp
lex III
+0.36
+0.39
ENVIRONMENT
E0ʹ′ (V)
Diversity  of  Bacteria  
• Come  in  various  shapes,  sizes,  and  colors  
• Nutrient  sources  vary  
• Growth  condiEons  vary  
• ClassificaEons  based  on  cell  structure  
Classes  of  Bacteria  
• Referred  to  by  their  “Gram”  classificaEon  
• Gram  negaEve  (G-­‐,  Gram-­‐)  or  Gram  posiEve  (G
+,  Gram+)  
– Based  on  ability  to  be  stained  with    
• Major  difference  is  the  architecture  of  the  cell  
membrane/envelope  
Fig. 4-16
Gram–negative
Gram–positive
Peptidoglycan
Peptidoglycan
Cytoplasm
Cytoplasm
Cytoplasmic membrane
Periplasm
Outer membrane
(Iipopolysaccharide and protein)
Membrane
Outer membrane
Peptidoglycan
Cytoplasmic
membrane
Cytoplasmic
membrane
Peptidoglycan
Fig. 4-18
N-Acetylglucosamine (G)
β(1,4
)
N-Acetylmuramic acid (M)
β(1,4
)
β(1,4
)
N-Acetyl
group
Peptide
cross-links
Lysozymesensitive
bond
L-Alanine
D-Glutamic acid
Meso-diaminopimelic acid
D-Alanine
Fig. 4-19
Glycan backbone
Interbridge
Peptides
Escherichia coli
(gram-negative)
Peptide bonds
Staphylococcus aureus
(gram-positive)
Glycosidic bonds
Fig. 4-20b
Wall-associated
protein
Teichoic acid
Lipoteichoic
acid
Peptidoglycan
Cytoplasmic
membrane
Fig. 4-21
Wall
Membrane
Lysozyme
digests wall
H2O enters
H2O enters
H2O enters
Low solute solution
Lysis
Lysozyme
digests wall
Protoplast
Isotonic solute solution
Fig. 4-22
O-specific polysaccharide
n
Core polysaccharide
Lipid A
Fig. 4-23
O–polysaccharide
Core
polysaccharide
Lipid A
Protein
Out
Lipopolysaccharide
(LPS)
Cell
wall
Outer
membrane
8 nm
Porin
Periplasm
Cytoplasmic
membrane
Peptidoglycan
Phospholipid
Lipoprotein
In
Fig. 4-24
Outer membrane
Periplasm
Cytoplasmic
membrane
Fig. 4-25
Lysozyme-insensitive
N-Acetyl
group
β(1,3)
N-Acetylglucosamine
Peptide
cross-links
N-Acetyltalosaminuronic acid
Part 3
Part 2
Part 1
Fig. 4-26
So  then,  how  does  a  Gram  stain  work?  
• Hans  ChrisEan  Gram  developed  this  staining  
protocol  to  disEnguish  causaEve  agents  in  
pneumonia  
• There  were  3  known  causes  for  pneumonia:  
– Bacterial  –  S.  pneumoniae,  gram  negaEve  
– Bacterial  –  K.  pneumoniae,  gram  posiEve  
– Viral  –  unknown  agent  in  Gram’s  Eme  
• Gram  stain  can  disEnguish  between  the  bacterial  
causaEve  agents  
• Allowed  pneumonia  paEents  to  be  housed  based  
on  the  causaEve  agent,  prevenEng  cross  
infecEons  
So  then,  how  does  a  Gram  stain  work?  
• Bacteria  are  first  stained  with  crystal  
violet  
• Gram  POSITIVE  bacteria  retain  the  CV  
(the  CV  binds  to  the  pepEdoglycan  
layer  and  is  retained).  
• A  counterstain  is  added  that  binds  all  
bacteria  (usually  safranin)  and  colors  
them  red.    Does  NOT  mask  the  CV  
• A  full  procedure  can  be  found  here:  
h>p://serc.carleton.edu/microbelife/
research_methods/microscopy/
gramstain.html  
A  Gram  stain  of  mixed  
Staphylococcus  aureus  (S.  
aureus  ATCC  25923,  Gram-­‐
posiEve  cocci,  in  purple)  and  
Escherichia  coli  (E.  coli  ATCC  
11775,  gram-­‐negaEve  bacilli,  
in  pink-­‐red)    
References  











h>p://cells-­‐breannaolivia.weebly.com/prokaryotes-­‐vs-­‐eukaryotes.html  
h>p://gookumpucky.blogspot.com/2011/01/serraEa-­‐marcescens.html  
h>ps://microbewiki.kenyon.edu/  
h>p://www.chromagar.com/food-­‐water-­‐chromagar-­‐pseudomonas-­‐focus-­‐
on-­‐pseudomonas-­‐36.html#.VP7tZeFm330  
deadlymicrobes.com  
www.tokresource.org  
h>p://www.microbiologyonline.org.uk/about-­‐microbiology/introducing-­‐
microbes/overview  
www.ks.uiuc.edu  
h>p://www.psi.ch/swissfel/the-­‐photocycle-­‐of-­‐bacteriorhodopsin  
Wikimedia  
Brock  –  microbiology  of  Microogranisms  12th  ed  
Resistance  
caputo@rowan.edu  
The  World  Health  Organiza:on  warns  that  
An:bio:c  resistance  is  a  “Global  Threat”  
The  chief  medical  officer  for  England,  Prof  
Dame  Sally  Davies,  said  the  rise  in  drug-­‐
resistant  infec:ons  
was  comparable  to  the  threat  of  global  
warming.    
Defini:ons  
• An#bio#c  resistance  
drug  resistance  
whereby  some  sub-­‐
popula:on  of  a  
bacterial  species  is  able  
to  survive  aLer  
exposure  to  one  or  
more  an:bio:cs  
• Mul#drug  resistance  
(MDR)  -­‐  pathogens  
resistant  to  mul:ple  
an:bio:cs  
Mechanisms  of  Resistance  
 Four  main  categories  
 i)  restricted  access  to  target/
restricted  accumula:on  to  
inhibitory  concentra:on    
 ii)  inac:va:on/destruc:on  of  
an:bio:c    
iii)  modifica:on  of  target  
iv)  failure  to  ac:vate  an:bio:c  
Limi:ng  access  to  an:bio:c  
• Polarity  of  an:microbial  drugs  
determine  the  diffusion/
passage  across  the  membrane  
 
• Outer  Membrane  Porins  
– Beta-­‐barrel  proteins  in  the  OM  
– reduce  number  of  porins  in  the  
outer  membrane  which  
decreases  flux  of  molecules  
across  the  outer  membrane  (G-­‐)  
OmpF  
• OmpF  is  an  E.coli  
general  diffusion  
porin.  
• Central  pore  
through  the  core  
of  the  β-­‐barrel  
Modifica:on  of  Entry  Mechanisms  
Efflux  Pumps  
• Used  to  pump  
compounds  OUT  of  
cells  
• Energy  dependent  
process  
– Primary  
– Secondary  
RND  Efflux  pumps  
Enzyma:c  Inac:va:on  of  An:bio:c  
• Enzymes  that  break  down  an:bio:cs  
• Usually  modify  the  an:bio:c  at  sites  involved  in  mechanism  of  
an:bio:cs  
• Well  characterized  example:  Beta-­‐lactamases    
– cleave  beta-­‐lactam  ring  
– Secreted  into  periplasm  of  G  –  
– Specific  to  beta  lactam  an:bio:cs  
Modifica:on  of  Drug  Target  
• Accumula:on  of  
spontaneous  
muta:ons    
• Reduc:on  of  affinity  
for  target  
• Modifica:on  of  ac:ve  
site  /  binding  site  
residues  
Prokaryotes  grow  on  surfaces  as  biofilms  

Microorganisms  a`ach  to  surfaces  and  
develop  biofilms.    

Biofilms  may  form  on  a  wide  variety  of  
surfaces,  including  living  :ssues,  indwelling  
medical  devices,  industrial  or  potable  water  
system  piping,  or  natural  aqua:c  systems.  
Can  contain  mul:ple  species  of  bacteria  
Biofilm-­‐associated  cells  can  be  differen:ated  
from  their  suspended  counterparts  by    


– genera:on  of  an  extracellular  polymeric  
substance  (EPS)  matrix,  
– reduced  growth  rates,    
– up-­‐  and  down-­‐regula:on  of  specific  
genes.  
Biofilm  forma:on  
• Adhesion  to  surfaces  begins  the  process  
• Genes  are  ac:vated  promo:ng  sedentary  
growth  and  EPS  secre:on  
• Individual  bacterial  colonies  can  be  separated  
from  one  another  in  the  film  
• Some  bacteria  can  be  triggered  into  biofilm  
forma:on    aLer  exposure  to  an:bio:cs  
Polymicrobic  biofilm  grown  on  a  stainless  steel  surface  in  a  laboratory  potable  water    
biofilm  reactor  for  14  days,  then  stained  with  4,6-­‐diamidino-­‐2-­‐phenylindole  (DAPI)  and  
examined  by  epifluorescence  microscopy.  Bar,  20  m.  
Growth  on  Medical  devices  
Killing  Biofilms  
• Added  complexity  
• EPS  serves  as  a  permeability  barrier  
• Mul:ple  bacteria  can  be  in  the  film  
complica:ng  treatment  
• Differen:al  gene  expression  can  impact  
efficacy  
References  
• Wikipedia  
• h`p://www.wiley.com/college/pra`/0471393878/instructor/
ac:vi:es/bacterial_drug_resistance/index.html  
• Brock  Microbiology  
• h`p://www.ncbi.nlm.nih.gov/pmc/ar:cles/PMC2696358/  
• doi:  10.1128/CMR.00043-­‐12    
• pharmaceu:calintelligence.com  
• h`p://journals.sfu.ca/rncsb/index.php/csbj/ar:cle/view/csbj.
201302008/228  
• h`p://www.nature.com/nrmicro/journal/v13/n1/full/
nrmicro3380.html  
• Cdc.gov  
• h`p://www.usmed-­‐online.de/usmed/index.php/de/citra-­‐lock/
informa:onen?showall=1&limitstart=  
An#bio#cs  
 
Lark  J.  Perez  
 
An#bio#c  Classes  by  Mechanism  of  Ac#on  and  History  
An#bio#cs  –  Classes  and  Historical  Perspec#ve  
An#bio#cs  –  Classes  and  Historical  Perspec#ve  
An#bio#cs  –  Classes  and  Historical  Perspec#ve  
An#bio#cs  –  Classes  and  Historical  Perspec#ve  
An#bio#cs  –  Increasing  Demand  BUT  Empty  Supply  
DEMAND  
SUPPLY  
1983-­‐
1987  
1988-­‐
1992  
1993-­‐
1997  
1998-­‐
2002  
2003-­‐
2007  
2008-­‐
2011  
An#bio#cs  –  Increasing  Demand…WHY?  
DEMAND  
An#bio#cs  –  Increasing  Demand…WHY?  
DEMAND  
An#bio#cs  –  Increasing  Demand…WHY?  
DEMAND  
Bacteria  adapt  resistance  to  an#bio#cs    
in  many  ways…  
-­‐changed  an2bio2c  targets  
-­‐an2bio2c  degrading  or  altering  enzymes  
-­‐drug  efflux  pumps  
An#bio#cs  –  Increasing  Demand…WHY?  
DEMAND  
Bacteria  adapt  resistance  to  an#bio#cs    
in  many  ways…  
-­‐changed  an2bio2c  targets  
-­‐an2bio2c  degrading  or  altering  enzymes  
-­‐drug  efflux  pumps  
…and,  they  rapidly  share  these  new    
adapta#ons  with  other  bacteria.    
An#bio#cs  –  Increasing  Demand…WHY?  
DEMAND  
Bacteria  adapt  resistance  to  an#bio#cs    
in  many  ways…  
-­‐changed  an2bio2c  targets  
-­‐an2bio2c  degrading  or  altering  enzymes  
-­‐drug  efflux  pumps  
…and,  they  rapidly  share  these  new    
adapta#ons  with  other  bacteria.    
An#bio#cs  –  Increasing  Demand…WHY?  
DEMAND  
Bacteria  adapt  resistance  to  an#bio#cs    
in  many  ways…  
-­‐changed  an2bio2c  targets  
-­‐an2bio2c  degrading  or  altering  enzymes  
-­‐drug  efflux  pumps  
…and,  they  rapidly  share  these  new    
adapta#ons  with  other  bacteria.    
An#bio#cs  –  Increasing  Demand…WHY?  
DEMAND  
Bacteria  adapt  resistance  to  an#bio#cs    
in  many  ways…  
-­‐changed  an2bio2c  targets  
-­‐an2bio2c  degrading  or  altering  enzymes  
-­‐drug  efflux  pumps  
…and,  they  rapidly  share  these  new    
adapta#ons  with  other  bacteria.    
An#bio#cs  –  Increasing  Demand…WHY?  
DEMAND  
Bacteria  adapt  resistance  to  an#bio#cs    
in  many  ways…  
-­‐changed  an2bio2c  targets  
-­‐an2bio2c  degrading  or  altering  enzymes  
-­‐drug  efflux  pumps  
…and,  they  rapidly  share  these  new    
adapta#ons  with  other  bacteria.    
An#bio#cs  –  Decreasing  Supply…WHY?  
SUPPLY  
1983-­‐
1987  
1988-­‐
1992  
1993-­‐
1997  
1998-­‐
2002  
2003-­‐
2007  
2008-­‐
2011  
No  single  reason,  many  contribu#ng  
factors,  including:  
-­‐  exis2ng  an2bio2cs  fail  largely  due  to  
misuse  and  misprescrip2on  
-­‐  financial  considera2ons…expensive  
to  develop  (like  any  drug)  and  used  
for  possibly  1-­‐week  per  year  (not  a  
chronic  illness  in  most  cases)  coupled  
to  “guaranteed”  misuse  and  
resistance  
-­‐  all  “easy”  molecular  targets  and  
drug  classes  have  been  developed.  
An#bio#cs  –  Increasing  Demand  BUT  Empty  Supply…WHAT  HAPPENS?  
Two  U.S.  presiden2al  sons.  
Calvin  Coolidge  Jr.      
Franklin  Delano  Roosevelt  Jr.      
An#bio#cs  –  Increasing  Demand  BUT  Empty  Supply…WHAT  HAPPENS?  
Two  U.S.  presiden2al  sons.  
Calvin  Coolidge  Jr.      
Franklin  Delano  Roosevelt  Jr.      
Age  16  –  developed  bacterial  infec2on  
from  a  blister  received  during  a  tennis  
match,  died  8  days  later.  
Age  22  –  developed  severe  bacterial  
throat  infec2on,  complete  recovery  
a[er  receiving  the  first  an2bio2c.  
New  York  Times,  July  8th,  1924  
Medicine:  Prontosil,  TIME  
Magazine,  December  28th,  1936  
An#bio#cs  –  Increasing  Demand  BUT  Empty  Supply…WHAT  HAPPENS?  
Two  U.S.  presiden2al  sons.  
Calvin  Coolidge  Jr.      
Franklin  Delano  Roosevelt  Jr.      
Age  16  –  developed  bacterial  infec2on  
from  a  blister  received  during  a  tennis  
match,  died  8  days  later.  
Age  22  –  developed  severe  bacterial  
throat  infec2on,  complete  recovery  
a[er  receiving  the  first  an2bio2c.  
New  York  Times,  July  8th,  1924  
Medicine:  Prontosil,  TIME  
Magazine,  December  28th,  1936  
An#bio#cs  –  Increasing  Demand  BUT  Empty  Supply…WHAT  HAPPENS?  
-­‐ Elec2ve  surgery  becomes  a  very  serious  business  with  a  high  risk  of  mortality  from  
some  complica2ng  infec2on.  
-­‐ Forget  organ  transplants,  immune  suppression  would  almost  certainly  be  fatal  in  these  
pa2ents.    
-­‐ HIV    and  other  diseases  and  treatments  effec2ng  the  immune  system  would  be  
significantly  more  dangerous.  
-­‐ Re2rements  would  quickly  get  shorter.  Before  an2bio2cs,  the  average  60  year  old  who  
caught  pneumonia  was  more  likely  than  not  to  die  of  it  than  not.    
-­‐ Maternal  mortality  would  be  a  lot  higher.    
-­‐ Neonates  would  be  much  more  likely  to  succumb  to  infec2on,  having  underdeveloped  
immune  systems.  
-­‐ Chronic,  untreated  bacterial  infec2ons  can  lead  to  various  types  of  cancer  (e.g.  
stomach  cancer)  and  other  diseases  which  would  increase  in  occurrence.  
-­‐ The  severely  disabled  would  have  much  shorter  life  spans.    Without  an2bio2cs,  there  
would  be  no  way  to  treat  the  bed  sores,  or  the  lung  and  urinary  tract  infec2ons  that  
are  common  for  people  with  limited  sensa2on  or  mobility.  
Take  Home:  An#bio#cs  are  important  to  human  health.  
An#bio#cs  
 
Lark  J.  Perez  
 
Introduc#on  to  An#bio#c  Classes  by  Mechanism  of  Ac#on  
An#bio#cs  History  and  Major  Classes  –  Preface  
Paul  Ehrlich  (Nobel  Prize  1908)    
‘It  will,  in  short,  become  possible  to  introduce  into  the  economy  a  molecular  
mechanism  which,  like  a  very  cunningly  contrived  torpedo,  shall  find  its  way  to  some  
parAcular  group  of  living  elements,  and  cause  an  explosion  among  them,  leaving  the  
rest  untouched.’  
 
 
 
 
 
 
 
 
 
 
 
 
 -­‐T.  Huxley  (1881)  
An#bio#cs  History  and  Major  Classes  –  Preface  
An#bio#cs  –  Classes  and  Historical  Perspec#ve  
An#bio#cs  History  and  Major  Classes  –  Sulfonamide  Drugs  
Gerhard  Domangk  (Nobel  Prize  1939)    
An#bio#cs  History  and  Major  Classes  –  Sulfonamide  Drugs  
O O
S
H 2N
Gerhard  Domangk  (Nobel  Prize  1939)    
O O
-­‐    Discovered  
S by    
NH 2
       screening  Ncompound  
N
N
       libraries  for  ac2vity.    
NH 2  
prontosil
-­‐  First  sulfonamide
effec2ve  drug  
     against  
infec2ous  
functional
group
     diseases.  
 
Key feature in
antibiotic
“sulfahis  
-­‐  Domangk  
saved  
drug”
class.
O O
     daughter  from    
S
H 2N
Antibiotics
this  
     having  
her  fiinnger  
class universally
NH 2
     amputated.  
inhibit DNA
sulfanilamide
synthesis.
‘The  least  hint  that  a  substance  might  be  effecAve  was  recorded  and  followed  up  by  the  
chemists  who,  on  the  strength  of  it,  made  innumerable  syntheses.’  
 
 
 
 
 
 
 
 
 
 
 
 -­‐G.  Domangk  (1939)    
An#bio#cs  History  and  Major  Classes  –  Sulfonamide  Drugs  
O O
S
H 2N
O O
S
N
NH 2
N
N
NH 2
prontosil
sulfonamide
functional
group
Key feature in
antibiotic “sulfa
drug” class.
O O
S
H 2N
NH 2
sulfanilamide
Antibiotics in this
class universally
inhibit DNA
synthesis.
An#bio#cs  –  Classes  and  Historical  Perspec#ve  
An#bio#cs  History  and  Major  Classes  –  β-­‐Lactam  Drugs  
hgps://www.youtube.com/watch?
v=5RGs-­‐2eNnjM&list=PLAPp-­‐
HtsJec5hORrThORgZ3-­‐bk9gHyBLy&index=20    
An#bio#cs  History  and  Major  Classes  –  β-­‐Lactam  Drugs  
Sir  Alexander  Fleming  (Nobel  
Prize  1948)    
‘One  someAmes  finds  what  one  is  not  
looking  for.’  
 
 
 
 
 
 -­‐  A.  Fleming  
An#bio#cs  History  and  Major  Classes  –  β-­‐Lactam  Drugs  
An#bio#cs  History  and  Major  Classes  –  β-­‐Lactam  Drugs  
An#bio#cs  History  and  Major  Classes  –  β-­‐Lactam  Drugs  
An#bio#cs  History  and  Major  Classes  –  β-­‐Lactam  Drugs  
An#bio#cs  History  and  Major  Classes  –  β-­‐Lactam  Drugs  
“This  delicate  process  has  more  hazards  than  an  obstacle  race.  The  
penicillium  mold,  found  in  fer#le  soil,  is  cul#vated  in  a  sugary  solu#on.  It  
develops  a  network  of  very  fine  branches,  called  “mycelium,”  which  
secrete  penicillin.  If  the  delicate  mycelium  breaks,  produc#on  of  
penicillin  stops.  Temperature  must  be  kept  at  24°C.  Worst  of  all  hazards  
is  contamina#on.  The  sugary  bath  in  which  the  mold  grows  is  an  ideal  
medium  for  bacteria;  if  any  get  in,  they  destroy  all  penicillin  present  in  
three  hours.  And  when  all  these  hazards  are  survived,  the  yield  is  
fantas#cally  small.  The  broth  from  which  powdered  penicillin  is  
extracted  contains  only  two  to  six  thousandths  of  1%  of  pure  penicillin.”    
 
See  more  at:  
h]p://scopeblog.stanford.edu/2010/09/26/
image_of_the_week_penicillin/#sthash.AYt3WjBV.dpuf    
An#bio#cs  History  and  Major  Classes  –  β-­‐Lactam  Drugs  
Structures  
Proposed  
for  Pennicillins:  
H
N
O
R
O
S
O
N
N
H
R
CO2H
O
R
S
N
H
N
O
N
O
HO 2C
S
O
In  the  ini2al  “SECRET”  report  (Oct  22,  1943),  “…one  of  us  [R.  Robinson]  considers  the  four-­‐ring  structure    
somewhat  improbable.”  See  J.  Chem.  Educ.  2004,  81  (10),  1462  for  more  informa2on.  
For  addi2onal  reading  on  the  history  
of  penicillin,  see:    
hgp://www.acs.org/content/acs/en/
educa2on/wha2schemistry/landmarks/
flemingpenicillin.html    
An#bio#cs  History  and  Major  Classes  –  β-­‐Lactam  Drugs  
‘  At  the  Ame  of  my  successful  
synthesis  of  Penicillin  V  in  1957,  I  
compared  the  problem  of  trying  to  
synthesize  penicillin  by  classical  
methods  to  that  of  aZempAng  to  
repair  the  mainspring  of  a  fine  
watch  with  a  blacksmiths  anvil,  
hammer  and  tongs.’                                                    
 
 
                     -­‐J.  Sheehan  (1982)  
An#bio#cs  History  and  Major  Classes  –  β-­‐Lactam  Drugs  
R.B.  Woodward  (Nobel  Prize  1965)    
O
HO
H
N
O
H 2N
S
N
OAc
O
O
OH
‘Again,  the  very  existence  of  this  substance,  containing  as  it  does  potenAaliAes  for  
annihilaAon  parallel  to  those  discussed  above  in  some  detail,  further  compounded  
by  the  considerable  strain  within  the  β-­‐lactam  ring,  represents  a  major  result  of  our  
invesAgaAon.’  
 
 
 
 
 
 
 
 
 
 
 -­‐R.B.  Woodward  (1965)  
An#bio#cs  History  and  Major  Classes  –  β-­‐Lactam  Drugs  
β-lactam antibiotics
NH 2
N
O
O
β-­‐lactam  
func#onal    
group  
 
Key  feature  in  
β-­‐lactam  an#bio#c  
class.  
 
An#bio#cs  in  this    
class  universally  
inhibit  cell  wall  
synthesis.  
H H H
N
S
N
O
S
N
O
O
OH
Imipenem
Penicillin Class (Penams)
Carbapenam Class
N
H 2N
NH
Ampicillin
H 3C
H 3C
S
CH 3
CH 3
OH
O
HN
OH
H H
N
O
OH
H 3C
H 3C
H H H
N
S
N
O
O
N
N
S
O
O
O
H 2N
N
O
OH
O
H
N
O
CH 3
N
O
SO 3H
Ceftazidime
Aztreonam
Cephalosporin Class (Cephems)
Monobactam Class
An#bio#cs  History  and  Major  Classes  –  β-­‐Lactam  Drugs  
NH 2
N
O
O
β-­‐lactam  
func#onal    
group  
 
Key  feature  in  
β-­‐lactam  an#bio#c  
class.  
 
An#bio#cs  in  this    
class  universally  
inhibit  cell  wall  
synthesis.  
H H H
N
S
N
O
S
N
O
O
OH
Imipenem
Penicillin Class (Penams)
Carbapenam Class
N
H 2N
NH
Ampicillin
H 3C
H 3C
S
CH 3
CH 3
OH
O
HN
OH
H H
N
O
OH
H 3C
H 3C
H H H
N
S
N
O
O
N
N
S
O
O
O
H 2N
N
O
OH
O
H
N
O
CH 3
N
O
SO 3H
Ceftazidime
Aztreonam
Cephalosporin Class (Cephems)
Monobactam Class
An#bio#cs  History  and  Major  Classes  –  β-­‐Lactam  Drugs  
NH 2
N
O
O
β-­‐lactam  
func#onal    
group  
 
Key  feature  in  
β-­‐lactam  an#bio#c  
class.  
 
An#bio#cs  in  this    
class  universally  
inhibit  cell  wall  
synthesis.  
H H H
N
S
N
O
S
N
O
O
OH
Imipenem
Penicillin Class (Penams)
Carbapenam Class
N
H 2N
NH
Ampicillin
H 3C
H 3C
S
CH 3
CH 3
OH
O
HN
OH
H H
N
O
OH
H 3C
H 3C
H H H
N
S
N
O
O
N
N
S
O
O
O
H 2N
N
O
OH
O
H
N
O
CH 3
N
O
SO 3H
Ceftazidime
Aztreonam
Cephalosporin Class (Cephems)
Monobactam Class
An#bio#cs  –  Classes  and  Historical  Perspec#ve  
An#bio#cs  History  and  Major  Classes  –  Streptomycin  
hgps://www.youtube.com/watch?v=aiXoguk-­‐
FUI&list=PLAPp-­‐HtsJec5hORrThORgZ3-­‐
bk9gHyBLy&index=16    
An#bio#cs  History  and  Major  Classes  –  Streptomycin  
Selman  Waksman  (right,  Nobel  Prize  1952)    
and  Albert  Schatz  (le[)  isolate  streptomycin  
from  the  ac2nobacterium  Streptomyces  griseus.  
An#bio#cs  History  and  Major  Classes  –  Streptomycin  
Selman  Waksman  (right,  Nobel  Prize  1952)    
and  Albert  Schatz  (le[)  isolate  streptomycin  
from  the  ac2nobacterium  Streptomyces  griseus.  
Streptomycin  displays  potent  ac2vity  against  
Mycobacterium  tuberculosis.  
Chemotherapy,  including  streptomycin  
contributes  to  rapid  drop  in  TB  deaths.  
An#bio#cs  History  and  Major  Classes  –  Streptomycin  
Selman  Waksman  (right,  Nobel  Prize  1952)    
and  Albert  Schatz  (le[)  isolate  streptomycin  
from  the  ac2nobacterium  Streptomyces  griseus.  
Streptomycin  displays  potent  ac2vity  against  
Mycobacterium  tuberculosis.  
Chemotherapy,  including  streptomycin  
contributes  to  rapid  drop  in  TB  deaths.  
Currently,  one  person  dies  from  TB  
every  20  seconds.  
An#bio#cs  History  and  Major  Classes  –  Streptomycin  and  
Tetracycline  
O
HO
HO
HO
H CH 3
HO
O
O HO
O
H
HN CH 3
O
H
OH O
OH
OH O
OH
O
NH 2
N
N
NH 2
H
H 3C OH
OH NH 2
NH 2
H
H 3C
OH
N
CH 3
H 2N
OH
Streptomycin
R 2N
NR 2
Tetracycline
First, representative
member of the
aminoglycoside
class of antibiotics.
RO
OR
Parent member of
the tetracycline
class of antibiotics.
Antibiotics in this
class universally
inhibit protein
synthesis by binding
the 30S subunit of
the ribosome.
OR
Many members
of the aminoglycoside
class of antibiotics
(excluing streptomycin)
contain a 2deoxystreptamine
motif.
Antibiotics in this
class universally
inhibit protein
synthesis by binding
the 30S subunit of
the ribosome.
O
OH O
O
NH 2
OH
H 3C OH
H 3C
N
CH 3
Until recently all
tetracycline antibiotics
were derived from
natural tetracyclines,
therefore the molecules
in this class are highly
similar in structure.
An#bio#cs  History  and  Major  Classes  –  Streptomycin  and  
Tetracycline  
O
HO
HO
HO
H CH 3
HO
O
O HO
O
H
HN CH 3
O
H
OH O
OH
OH O
OH
O
NH 2
N
N
NH 2
H
H 3C OH
OH NH 2
NH 2
H
H 3C
OH
N
CH 3
H 2N
OH
Streptomycin
R 2N
NR 2
Tetracycline
First, representative
member of the
aminoglycoside
class of antibiotics.
RO
OR
Parent member of
the tetracycline
class of antibiotics.
Antibiotics in this
class universally
inhibit protein
synthesis by binding
the 30S subunit of
the ribosome.
OR
Many members
of the aminoglycoside
class of antibiotics
(excluing streptomycin)
contain a 2deoxystreptamine
motif.
Antibiotics in this
class universally
inhibit protein
synthesis by binding
the 30S subunit of
the ribosome.
O
OH O
O
NH 2
OH
H 3C OH
H 3C
N
CH 3
Until recently all
tetracycline antibiotics
were derived from
natural tetracyclines,
therefore the molecules
in this class are highly
similar in structure.
An#bio#cs  History  and  Major  Classes  –  Streptomycin  and  
Tetracycline  
O
HO
HO
HO
H CH 3
HO
O
O HO
O
H
HN CH 3
O
H
OH O
OH
OH O
OH
O
NH 2
N
N
NH 2
H
H 3C OH
OH NH 2
NH 2
H
H 3C
OH
N
CH 3
H 2N
OH
Streptomycin
R 2N
NR 2
Tetracycline
First, representative
member of the
aminoglycoside
class of antibiotics.
RO
OR
Parent member of
the tetracycline
class of antibiotics.
Antibiotics in this
class universally
inhibit protein
synthesis by binding
the 30S subunit of
the ribosome.
OR
Many members
of the aminoglycoside
class of antibiotics
(excluing streptomycin)
contain a 2deoxystreptamine
motif.
Antibiotics in this
class universally
inhibit protein
synthesis by binding
the 30S subunit of
the ribosome.
O
OH O
O
NH 2
OH
H 3C OH
H 3C
N
CH 3
Until recently all
tetracycline antibiotics
were derived from
natural tetracyclines,
therefore the molecules
in this class are highly
similar in structure.
An#bio#cs  History  and  Major  Classes  –  Streptomycin  and  
Tetracycline  
O
HO
HO
HO
H CH 3
HO
O
O HO
O
H
HN CH 3
O
H
OH O
OH
OH O
OH
O
NH 2
N
N
NH 2
H
H 3C OH
OH NH 2
NH 2
H
H 3C
OH
N
CH 3
H 2N
OH
Streptomycin
R 2N
NR 2
Tetracycline
First, representative
member of the
aminoglycoside
class of antibiotics.
RO
OR
Parent member of
the tetracycline
class of antibiotics.
Antibiotics in this
class universally
inhibit protein
synthesis by binding
the 30S subunit of
the ribosome.
OR
Many members
of the aminoglycoside
class of antibiotics
(excluing streptomycin)
contain a 2deoxystreptamine
motif.
Antibiotics in this
class universally
inhibit protein
synthesis by binding
the 30S subunit of
the ribosome.
O
OH O
O
NH 2
OH
H 3C OH
H 3C
N
CH 3
Until recently all
tetracycline antibiotics
were derived from
natural tetracyclines,
therefore the molecules
in this class are highly
similar in structure.
An#bio#cs  –  Classes  and  Historical  Perspec#ve  
An#bio#cs  History  and  Major  Classes  –  Macrolides  and  
Chloramphenicol  
O
H 3C
HO
H 3C
H 3C
CH 3
OH
H 3C
O
O
OH
CH 3
HO
O
O
CH 3
O
OH OH
N(CH 3)2
O
OCH3
OH
OH
CH 3
Erythromycin
Representative
member of the
macrolide class of
antibiotics.
Antibiotics in this
class universally
inhibit protein
synthesis by binding
the 50S subunit of
the ribosome.
Cl
CH 3
O2N
O
H 3C
HO
H 3C
H 3C
O
OR
CH 3
HO
O
O
CH 3
O
Cl
O
CH 3
OH
H 3C
O
HN
N(CH 3)2
O
CH 3
OCH3
OH
OH
CH 3
Macrolide antibiotics
are derived from
natural macrolides,
therefore the molecules
in this class are highly
similar in structure, only
differing at the ketone
and 7-hydroxy substituent.
Chloramphenicol
No other derivatives
of this compound
are used as
antibiotics.
Chloramphenicol
inhibits protein
synthesis by binding
the 50S subunit of
the ribosome.
An#bio#cs  History  and  Major  Classes  –  Macrolides  and  
Chloramphenicol  
O
H 3C
HO
H 3C
H 3C
CH 3
OH
H 3C
O
O
OH
CH 3
HO
O
O
CH 3
O
OH OH
N(CH 3)2
O
OCH3
OH
OH
CH 3
Erythromycin
Representative
member of the
macrolide class of
antibiotics.
Antibiotics in this
class universally
inhibit protein
synthesis by binding
the 50S subunit of
the ribosome.
Cl
CH 3
O2N
O
H 3C
HO
H 3C
H 3C
O
OR
CH 3
HO
O
O
CH 3
O
Cl
O
CH 3
OH
H 3C
O
HN
N(CH 3)2
O
CH 3
OCH3
OH
OH
CH 3
Macrolide antibiotics
are derived from
natural macrolides,
therefore the molecules
in this class are highly
similar in structure, only
differing at the ketone
and 7-hydroxy substituent.
Chloramphenicol
No other derivatives
of this compound
are used as
antibiotics.
Chloramphenicol
inhibits protein
synthesis by binding
the 50S subunit of
the ribosome.
An#bio#cs  History  and  Major  Classes  –  Macrolides  and  
Chloramphenicol  
O
H 3C
HO
H 3C
H 3C
CH 3
OH
H 3C
O
O
OH
CH 3
HO
O
O
CH 3
O
OH OH
N(CH 3)2
O
OCH3
OH
OH
CH 3
Erythromycin
Representative
member of the
macrolide class of
antibiotics.
Antibiotics in this
class universally
inhibit protein
synthesis by binding
the 50S subunit of
the ribosome.
Cl
CH 3
O2N
O
H 3C
HO
H 3C
H 3C
O
OR
CH 3
HO
O
O
CH 3
O
Cl
O
CH 3
OH
H 3C
O
HN
N(CH 3)2
O
CH 3
OCH3
OH
OH
CH 3
Macrolide antibiotics
are derived from
natural macrolides,
therefore the molecules
in this class are highly
similar in structure, only
differing at the ketone
and 7-hydroxy substituent.
Chloramphenicol
No other derivatives
of this compound
are used as
antibiotics.
Chloramphenicol
inhibits protein
synthesis by binding
the 50S subunit of
the ribosome.
An#bio#cs  –  Classes  and  Historical  Perspec#ve  
An#bio#cs  History  and  Major  Classes  –  Rifamycin  and  
Quinolones  
CH 3 CH 3
HO
H 3C
OH O
AcO
OH OH
H 3C CH 3
NH
H 3CO
O
O
O
O
H 3C
O
O
CH 3
Antibiotics in this
class universally
inhibit RNA
synthesis by binding
RNA polymerase.
F
HO
N
CH 3 CH 3
HO
H
3C
OH
OH O
AcO
OH OH
H 3C CH 3
NH
H 3CO
O
O
O
O
O
F
HO
CH 3
N
Ciprofloxacin
O
O
H 3C
N
NH
Rifamycin B
Parent member of
the rifamycin class
of antibiotics.
O
OH
Rifamycin antibiotics
are derived from
natural rifamycins,
therefore the molecules
in this class are highly
similar in structure.
Representative
member of the
quinolone
(fluoroquinolone)
class of antibiotics.
Antibiotics in this
class universally
inhibit DNA
topoisomerase.
Quinolone
antibiotics are fully
synthetic. The
fluorine (shown) is
not necessary but
is present in many
members of this
class. Antibiotics
with this fluorine
are called
fluoroquinolones.
An#bio#cs  History  and  Major  Classes  –  Rifamycin  and  
Quinolones  
CH 3 CH 3
HO
H 3C
OH O
AcO
OH OH
H 3C CH 3
NH
H 3CO
O
O
O
O
H 3C
O
O
CH 3
Antibiotics in this
class universally
inhibit RNA
synthesis by binding
RNA polymerase.
F
HO
N
CH 3 CH 3
HO
H
3C
OH
OH O
AcO
OH OH
H 3C CH 3
NH
H 3CO
O
O
O
O
O
F
HO
CH 3
N
Ciprofloxacin
O
O
H 3C
N
NH
Rifamycin B
Parent member of
the rifamycin class
of antibiotics.
O
OH
Rifamycin antibiotics
are derived from
natural rifamycins,
therefore the molecules
in this class are highly
similar in structure.
Representative
member of the
quinolone
(fluoroquinolone)
class of antibiotics.
Antibiotics in this
class universally
inhibit DNA
topoisomerase.
Quinolone
antibiotics are fully
synthetic. The
fluorine (shown) is
not necessary but
is present in many
members of this
class. Antibiotics
with this fluorine
are called
fluoroquinolones.
An#bio#cs  History  and  Major  Classes  –  Rifamycin  and  
Quinolones  
CH 3 CH 3
HO
H 3C
OH O
AcO
OH OH
H 3C CH 3
NH
H 3CO
O
O
O
O
H 3C
O
O
CH 3
Antibiotics in this
class universally
inhibit RNA
synthesis by binding
RNA polymerase.
F
HO
N
CH 3 CH 3
HO
H
3C
OH
OH O
AcO
OH OH
H 3C CH 3
NH
H 3CO
O
O
O
O
O
F
HO
CH 3
N
Ciprofloxacin
O
O
H 3C
N
NH
Rifamycin B
Parent member of
the rifamycin class
of antibiotics.
O
OH
Rifamycin antibiotics
are derived from
natural rifamycins,
therefore the molecules
in this class are highly
similar in structure.
Representative
member of the
quinolone
(fluoroquinolone)
class of antibiotics.
Antibiotics in this
class universally
inhibit DNA
topoisomerase.
Quinolone
antibiotics are fully
synthetic. The
fluorine (shown) is
not necessary but
is present in many
members of this
class. Antibiotics
with this fluorine
are called
fluoroquinolones.
An#bio#cs  History  and  Major  Classes  –  Rifamycin  and  
Quinolones  
CH 3 CH 3
HO
H 3C
OH O
AcO
OH OH
H 3C CH 3
NH
H 3CO
O
O
O
O
H 3C
O
O
CH 3
Antibiotics in this
class universally
inhibit RNA
synthesis by binding
RNA polymerase.
F
HO
N
CH 3 CH 3
HO
H
3C
OH
OH O
AcO
OH OH
H 3C CH 3
NH
H 3CO
O
O
O
O
O
F
HO
CH 3
N
Ciprofloxacin
O
O
H 3C
N
NH
Rifamycin B
Parent member of
the rifamycin class
of antibiotics.
O
OH
Rifamycin antibiotics
are derived from
natural rifamycins,
therefore the molecules
in this class are highly
similar in structure.
Representative
member of the
quinolone
(fluoroquinolone)
class of antibiotics.
Antibiotics in this
class universally
inhibit DNA
topoisomerase.
Quinolone
antibiotics are fully
synthetic. The
fluorine (shown) is
not necessary but
is present in many
members of this
class. Antibiotics
with this fluorine
are called
fluoroquinolones.
An#bio#cs  –  Overview  of  Upcoming  Detailed  Discussions  
An#bio#cs  
 
Lark  J.  Perez  
 
β-­‐lactam  an#bio#cs  and  vancomycin  
An#bio#cs  –  Classifica#on  by  Mechanism  of  Ac#on  
An#bio#cs  –  Classifica#on  by  Mechanism  of  Ac#on  
β-­‐Lactam  An#bio#cs  -­‐  Review  
NH 2
N
O
O
β-­‐lactam  
func#onal    
group  
 
Key  feature  in  
β-­‐lactam  an#bio#c  
class.  
 
An#bio#cs  in  this    
class  universally  
inhibit  cell  wall  
synthesis.  
H H H
N
S
N
O
S
N
O
O
OH
Imipenem
Penicillin Class (Penams)
Carbapenam Class
N
H 2N
NH
Ampicillin
H 3C
H 3C
S
CH 3
CH 3
OH
O
HN
OH
H H
N
O
OH
H 3C
H 3C
H H H
N
S
N
O
O
N
N
S
O
O
O
H 2N
N
O
OH
O
H
N
O
CH 3
N
O
SO 3H
Ceftazidime
Aztreonam
Cephalosporin Class (Cephems)
Monobactam Class
β-­‐Lactam  An#bio#cs  -­‐  Overview  
YouTube:   h,ps://www.youtube.com/watch?v=qBdYnRhdWcQ    
Bacterial  Cell  Wall  Structure  and  Biosynthesis  
Porin  
Trends  in  Biotechnology  2010  28,  10,  596-­‐604.  
Bacterial  Cell  Wall  Structure  and  Biosynthesis  
Porin  
carbohydrate  
(-­‐glycan)  
pepLde  
(pep#do-­‐)  
Trends  in  Biotechnology  2010  28,  10,  596-­‐604.  
Bacterial  Cell  Wall  Structure  and  Biosynthesis  
Porin  
carbohydrate  
(-­‐glycan)  
pepLde  
(pep#do-­‐)  
Trends  in  Biotechnology  2010  28,  10,  596-­‐604.  
Bacterial  Cell  Wall  Structure  and  Biosynthesis  
NAM  
Porin  
NAG  
carbohydrate  
(-­‐glycan)  
pepLde  
(pep#do-­‐)  
Trends  in  Biotechnology  2010  28,  10,  596-­‐604.  
Bacterial  Cell  Wall  Structure  and  Biosynthesis  
Porin  
Vancomycin  
carbohydrate  
(-­‐glycan)  
pepLde  
(pep#do-­‐)  
Trends  in  Biotechnology  2010  28,  10,  596-­‐604.  
Bacterial  Cell  Wall  Structure  and  Biosynthesis  
Porin  
Vancomycin  
β-­‐Lactams  
carbohydrate  
(-­‐glycan)  
pepLde  
(pep#do-­‐)  
Trends  in  Biotechnology  2010  28,  10,  596-­‐604.  
Peptide
H2N
H NH
H2N
H NH
O
The  Final  Step  in  Cell  Wall  Biosynthesis  
O
O
HN
HN
(Gly)3 NH2 H
(Gly) 3 NH 2
( )4
H
( )4
O
HN
O
HN
H NH
O
H NH
O
H3C
H3C
O
O
β-­‐Lactams  HN H
HN H
CO2H
CO2H
H3C
H3 C
O
N-acetylglucosamine N-acetylmuramic acid
(NAG) OH
(NAM)
NHAc
O HO
O
O
O
O
O
NHAc
H3C
OH
O
HN H
O
CH
3
Peptide
H NH
H2N
O
O
HN
(Gly)3 NH2
( )4
H
O
HN
H NH
O
H3C
O
HN H
CO2H
H3C
Peptide
H2N
H NH
H2N
H NH
O
The  Final  Step  in  Cell  Wall  Biosynthesis  
O
O
HN
HN
(Gly)3 NH2 H
(Gly) 3 NH 2
( )4
H
( )4
O
HN
O
HN
H NH
O
H NH
O
H3C
H3C
O
O
β-­‐Lactams  HN H
HN H
CO2H
CO2H
H3C
H3 C
O
N-acetylglucosamine N-acetylmuramic acid
(NAG) OH
(NAM)
NHAc
O HO
O
O
O
O
O
NHAc
H3C
OH
O
HN H
O
CH
3
Peptide
H NH
H2N
O
O
HN
(Gly)3 NH2
( )4
H
O
HN
H NH
O
H3C
O
HN H
CO2H
H3C
GlycosylaLon  
(Vancomycin  
inhibits  this  process)  
The  Final  Step  in  Cell  Wall  Biosynthesis  
β-­‐Lactams  
N-acetylglucosamine N-acetylmuramic acid
(NAG) OH
(NAM)
OH
NHAc
NHAc
O HO
O HO
O
O
O
O
O
O
O
O
O
NHAc
NHAc
H3C
H3 C
OH
OH
O
O
HN H
HN H
O
O
CH3
CH 3
H2N
Peptide H NH
H NH
H2N
O
O
O
O
HN
HN
(Gly)3 NH2 H
(Gly) 3 NH 2
( )4
H
( )4
O
HN
O
HN
H NH
O
H NH
O
H3C
H3C
O
O
HN H
HN H
CO2H
CO2H
H3C
H3 C
TranspepLdase  (penicillin  binding  protein)  
catalyzes  crosslinking  of  pepLdoglycan  
The  Final  Step  in  Cell  Wall  Biosynthesis  
β-­‐Lactams  
D -Alanyl-D -alanine
N-acetylglucosamine N-acetylmuramic acid
(NAG) OH
(NAM)
OH
NHAc
NHAc
O HO
O HO
O
O
O
O
O
O
O
O
O
NHAc
NHAc
H3C
H3 C
OH
OH
O
O
HN H
HN H
O
O
CH3
CH 3
H2N
Peptide H NH
H NH
H2N
O
O
O
O
HN
HN
(Gly)3 NH2 H
(Gly) 3 NH 2
( )4
H
( )4
O
HN
O
HN
H NH
O
H NH
O
H3C
H3C
O
O
HN H
HN H
CO2H
CO2H
H3C
H3 C
H
ENZYME
H CH 3 O
N
Peptide
H CH 3
N
O
O
H CO2H
CH 3
H 2N
H CO2H
activated for nucleophilic
attack (peptidoglycan crosslinking)
H CH 3
N
Peptide
O
O
ENZYME
O
TranspepLdase  (penicillin  binding  protein)  
catalyzes  crosslinking  of  pepLdoglycan  
β-­‐Lactam  An#bio#cs  –  Mechanism  of  Ac#on  
D -Alanyl-D -alanine
H
ENZYME
H CH 3 O
N
Peptide
H CH 3
N
O
O
H CO2H
β-lactam antibiotics (penicillins)
are active site mimics
H
ENZYME
H H H O
CH
S CH
N3
RH
3
N
Peptide
O H CH
N 3
CH 3
N
O
O
H CO2H
O
H CO2H
D -Alanyl-D -alanine
(natural substrate)
activated for nucleophilic
attack (peptidoglycan crosslinking)
H CH 3
N
Peptide
O
O
O
ENZYME
irreversible enzyme inhibition
R
H H H
O S O
N
ENZYME
H CH 3
H
OR
CH
S 3 CH
NN
3
O
CO2H CH 3
H HN
O
Penicillins
H CO2H
(substrate mimic)
TRANSPEPTIDASE  (PENICILLIN  BINDING  PROTEIN)  
β-­‐Lactam  An#bio#cs  –  Mechanism  of  Ac#on  
D -Alanyl-D -alanine
H
ENZYME
H CH 3 O
N
Peptide
H CH 3
N
O
O
H CO2H
activated for nucleophilic
attack (peptidoglycan crosslinking)
H CH 3
N
Peptide
O
O
β-lactam antibiotics (penicillins)
are active site mimics
D -Alanyl-D -alanine
H
ENZYME
H H O
H
H
ENZYME
CH
S CH
H CH 3 RHO N3
3
N
N
Peptide Peptide
H
N
CH
CH
3
H O
3
N
ON CH 3O
O
H CO2H
O
O
H CO2HH CO2H
D -Alanyl-D -alanine
(natural substrate)
irreversible enzyme inhibition
activated for nucleophilic
attack (peptidoglycan Hcrosslinking)
H H
O S O
N
R
ENZYME
ENZYME
H CH 3
O
H
ENZYME CH
S 3 CH
H CHO3 R O NN
3
O
N
Peptide
CO2H CH 3
H HN
O
O
Penicillins
H CO2H
O
(substrate
mimic)
β-lactam antibiotics (penicillins)
are active site mimics
H
ENZYME
H H H O
S CH
N
R
3
O
N
O
CH 3
H CO2H
irreversible enzyme inhibition
O
H
N
R
O
TRANSPEPTIDASE  (PENICILLIN  BINDING  PROTEIN)  
O
H
H HN
ENZYME
S
CH 3
CH 3
H CO2H
β-­‐Lactam  An#bio#cs  –  β-­‐Lactamases  
β-lactam antibiotics (penicillins)
are active site mimics
H
ENZYME
H H H O
S CH
N
R
3
O
N
O
R
O
H
ENZYME
H H H O
S CH
N
R
CH 3
3
O
O
H
H HN
CH 3
CH 3
H CO2H
CH 3
H CO2H
irreversible inactivation of penicillin
O
H
N
ENZYME
S
N
O
H CO2H
irreversible enzyme inhibition
O
H
N
β-lactamase enzymes similarly
bind β-lactam antibiotics
R
O
O
H
H HN
ENZYME
S
CH 3
CH 3
enzyme
turnover (H 2O)
O
H
N
H CO2H
R
O
OH
H
S
H HN
CH 3
CH 3
H CO2H
TRANSPEPTIDASE    
(PENICILLIN  BINDING  PROTEIN)  
β-LACTAMASE    
β-­‐Lactam  An#bio#cs  –  β-­‐Lactamases  
β-lactamase enzymes are inhibited
using a β-lactamase inhibitor
ENZYME
β-lactamase enzymes similarly
β-lactamase enzymes are inhibited
H
O
bind β-lactam antibiotics
using
H a β-lactamase
ENZYME
ENZYME inhibitor
IRREVERSIBLE
O
H
O
Clavulanic
H
OH
H
H
O
O OH
Acid
ENZYME
ENZYME
O
IRREVERSIBLE
INHIBITION
OH
H 2N
H O
O
H H H O
Clavulanic
H
H
OH
S CH
O
N
N
R
Acid
O
3
INHIBITION
HOCO
O
HN
2H
H CO2H N
O
N
CH 3
O
O
H CO2H
H CO2H
H
ENZYME
O
H H
OH O
ENZYME
H
H
O
O HN
ENZYME
OH H
O
H
H
ENZYME
irreversible inactivation of penicillin
O
H CO H
OH
O
O
2 O
H
HN
O
+
O
O
OH
H O
N
ENZYME
enzyme
H
H
O
H
turnover (H 2O)
H CO2H N
H+
S CH
N
R
H
3
H O
ENZYME
ENZYME
H CO2H
H HN
O
CH 3
OH
H H
OH
ENZYME
O
O
H
ENZYME
O
H CO2H
OH
H
H
O
H
H H
O
S CH
H
O
N
R
O
O
3
OH H
N
OH
O
N
H
H HN
O
O
CH 3
O
O
H H
H CO2H N
N
H
CO2H
H CO2H
O
H CO2H
H
H
β-LACTAMASE    
J.  Biol.  Chem.  2005  Oct  21;  280(42),  35528-­‐36  
O
O
O
An#bio#cs  
 
Lark  J.  Perez  
 
β-­‐lactam  an#bio#cs  and  vancomycin  con#nued  
β-­‐Lactam  An#bio#cs  –  Natural  Resistance  
 
-­‐ human  cells  (no  pepLdoglycan  in  cell  wall)  
 
-­‐ fungal  cells  (cell  wall  structure  from  chiLn)  
 
-­‐ some  bacteria  (specific  and  unique  natural  resistance)  
 
Gram-­‐negaLve  bacteria  inherently  have  some  (typically  lower)  level  of  natural  
resistance  due  to  the  outer  membrane.  Other  examples  include  Mycobacterium  
tuberculosis  where  mycolic  acid  layer  blocks  drug  access  to  pepLdoglycan  and  
Chlamydia  bacteria  which  are  parasiLc  spending  part  of  their  life  cycle  inside  host  cells  
where  they  are  inaccessible  to  the  drug.  
   
β-­‐Lactam  An#bio#cs  –  Acquired  Resistance  
 
1)  β-­‐lactamase  producLon  (Soluble,  released  enzyme…β-­‐lactamase  inhibitors  help  with  this)  
2)  AlteraLons  in  porin  size  (In  gram-­‐negaLve  bacteria  smaller  porins  decrease  the    
permeability  of  the  outer  membrane  prevenLng  the  drug  from  access  to  pepLdoglycan  layer)  
3)  Efflux  pumps  (Energy  dependent  (e.g.  ATP),  acLve  export  of  the  drug  from  the  cell)  
4)  MutaLons  to  the  transpepLdase  enzyme  (Modified  transpepLdase  enzymes  
which  are  sLll  able  to  catalyze  the  crosslinking  of  pepLdoglycan  but  do  not  bind  to  penicillins.)  
 
 
Conceptual  approach  to  remembering  resistance  mechanisms:  
1) Destroy  the  drug  before  it  gets  to  the  cell.  
2) Don’t  destroy  the  drug  but  prevent  it  from  geing  into  the  cell.  
3) Let  the  drug  in  but  once  it  has  entered  the  cell,  kick  it  out.  
4) Change  the  biological  target  so  it  no  longer  ma,ers  if  the  drug  is  present  or  not.  
 
β-­‐Lactam  An#bio#cs  –  Penicillin  An#bio#cs  
H H H
N
S
R
N
R
R
ALL PENICILLINS
ARE BACTERIOCIDAL
O
OH
O
Penicillin Class (Penams)
Gram-positive
ONLY
NARROW
SPECTRUM
Very Narrow Spectrum
Natural
H H H
N
S
N
O
BROAD
SPECTRUM
O
O
CH 3
CH 3
O
N
Cl
O
Cl O
OH
penicillin G
O
N
O
O
penicillin V
N
O
dicloxacillin
H H H
N
S
O
H H H
N
S
Extended Spectrum
NH 2
CH 3
CH 3
O
ampicillin
NH 2
OH
H H H
N
S
O
N
OH
O
N
O
methicillin
O
CH 3
CH 3
HO
O
O
amoxicillin
S
O
N
O
O
ticarcillin
N
OH
CO2H
H H H
N
S
OH
O
H H H
N
S
O
anti-Pseudomonal
CH 3
CH 3
O
O
CH 3
CH 3
H H H
N
S
Gram-positive and
Gram-negative
CH 3
CH 3
OH
CO2H
H H H
N
S
O
N
O
carbenicillin
O
CH 3
CH 3
OH
CH 3
CH 3
OH
β-­‐Lactam  An#bio#cs  –  Penicillin  An#bio#cs  
H H H
N
S
R
N
R
R
ALL PENICILLINS
ARE BACTERIOCIDAL
O
OH
O
Penicillin Class (Penams)
Gram-positive
ONLY
NARROW
SPECTRUM
Very Narrow Spectrum
Natural
H H H
N
S
N
O
BROAD
SPECTRUM
O
O
CH 3
CH 3
O
N
Cl
O
Cl O
OH
penicillin G
O
N
O
O
penicillin V
N
O
dicloxacillin
H H H
N
S
O
H H H
N
S
Extended Spectrum
NH 2
CH 3
CH 3
O
ampicillin
NH 2
OH
H H H
N
S
O
N
OH
O
N
O
methicillin
O
CH 3
CH 3
HO
O
O
amoxicillin
S
O
N
O
O
ticarcillin
N
OH
CO2H
H H H
N
S
OH
O
H H H
N
S
O
anti-Pseudomonal
CH 3
CH 3
O
O
CH 3
CH 3
H H H
N
S
Gram-positive and
Gram-negative
CH 3
CH 3
OH
CO2H
H H H
N
S
O
N
O
carbenicillin
O
CH 3
CH 3
OH
CH 3
CH 3
OH
β-­‐Lactam  An#bio#cs  –  Penicillin  An#bio#cs  
H H H
N
S
R
N
R
R
ALL PENICILLINS
ARE BACTERIOCIDAL
O
OH
O
Penicillin Class (Penams)
Gram-positive
ONLY
NARROW
SPECTRUM
Very Narrow Spectrum
Natural
H H H
N
S
N
O
BROAD
SPECTRUM
O
O
CH 3
CH 3
O
N
Cl
O
Cl O
OH
penicillin G
O
N
O
O
penicillin V
N
O
dicloxacillin
H H H
N
S
O
H H H
N
S
Extended Spectrum
NH 2
CH 3
CH 3
O
ampicillin
NH 2
OH
H H H
N
S
O
N
OH
O
N
O
methicillin
O
CH 3
CH 3
HO
O
O
amoxicillin
S
O
N
O
O
ticarcillin
N
OH
CO2H
H H H
N
S
OH
O
H H H
N
S
O
anti-Pseudomonal
CH 3
CH 3
O
O
CH 3
CH 3
H H H
N
S
Gram-positive and
Gram-negative
CH 3
CH 3
OH
CO2H
H H H
N
S
O
N
O
carbenicillin
O
CH 3
CH 3
OH
CH 3
CH 3
OH
β-­‐Lactam  An#bio#cs  –  Overview  
H H H
N
S
R
Defines Antibiotic
Spectrum Activity
CH 3
N
CH 3
Defines Antibiotic
O
SpectrumOH
Activity
O
Penicillin Class (Penams)
Very Narrow Spectrum
O
O
N
O
O
methicillin
O
O
N
O
O
methicillin
H H H
N
S
O
N
O
methicillin
O
N
O
CO2H
H H H
H H H
N
S
N
S CH
3
S
O
N
O
N
OCH 3
O
OH
O
O
methicillin ticarcillin
CH 3
CH 3
OH
O
CH 3…

Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper
Still stressed from student homework?
Get quality assistance from academic writers!

Order your essay today and save 25% with the discount code LAVENDER