BUS461:Decision Modeling & Analysis Assignment1 – Uncertainty

Business Math – please only reply if you understand how to complete assignment…please see attachments. 

Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper

Must be completed on excel spreadsheet 

Week 2 – Assignment

Uncertainty

Read Case 6.3: Electronic Timing System for Olympics on pages 275-276 of the textbook.  For this 

Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper

assignment, you will  assess and use the correct support tool to develop a decision tree as described in 

Part “a” of Case 6.3. Analyze and apply the best decision making process to provide answers and brief 

explanations for parts “a”, “b”, “c”, and “d”. The answers and explanations can be placed in the same 

Excel document as the decision tree.

a. Develop a decision tree that can be used to solve Chang’s problem. You can assume in this 

part of the problem that she is using EMV (of her net profit) as a decision criterion. Build the 

tree so that she can enter any values for p1, p2, and p3 (in input cells) and automatically see 

her optimal EMV and optimal strategy from the tree.

b. If p2 = 0.8 and p3 = 0.1, what value of p1 makes Chang indifferent between abandoning the 

project and going ahead with it?

c. How much would Chang benefit if she knew for certain that the Olympic organization would 

guarantee her the contract? (This guarantee would be in force only if she were successful in 

developing the product.) Assume p1 = 0.4, p2 = 0.8, and p3 = 0.1

d. Suppose now that this is a relatively big project for Chang. Therefore, she decides to use 

expected utility as her criterion, with an exponential utility function. Using some trial and error, 

see which risk tolerance changes her initial decision from “go ahead” to “abandon” when p1 = 

0.4, p2 = 0.8, and p3 = 0.1.

In your Excel document,

1. Develop a decision tree using the most appropriate support tool as described in Part a.

2. Calculate the value of p1 as described in Part b. 

Show calculations.

3. Calculate the possible profit using the most appropriate support tool as described in Part c. 

Show calculations.

4. Calculate risk tolerance as described in Part d. Show calculations.

Carefully review the Grading Rubric

(http://ashford.waypointoutcomes.com/assessment/20454/preview)  for the criteria that will be used to 

evaluate your assignment.

Waypoint Assignment

Submission

The assignments in this course will be submitted to Waypoint.  Please refer to the instructions below to 

submit your assignment.

This tool needs to be loaded in a new browser window 

1. Click on the Assignment Submission button below. The Waypoint “Student Dashboard” will open 

in a new browser window.

2. Browse for your assignment.

3. Click Upload.

4. Confirm that your assignment was successfully submitted by viewing the appropriate week’s 

assignment tab in Waypoint.

For more detailed instructions, refer to the Waypoint Tutorial

(https://bridgepoint.equella.ecollege.com/curriculum/file/dc358708-3d2b-41a6-a000-

ff53b3cc3794/1/Waypoint%20Tutorial )

(https://bridgepoint.equella.ecollege.com/curriculum/file/dc358708-3d2b-41a6-a000-

ff53b3cc3794/1/Waypoint%20Tutorial ) .

The session for this tool has expired. Please reload the page to access the tool again

CASE

6.3 ELECTRONIC TIMING SYSTEM FOR OLYMPICS

Sarah Chang is the owner of a small electronics company. In six months, a proposal is due for an electronic timing system for the next Olympic Games. For several years, Chang’s company has been developing a new microprocessor, a critical component in a timing system that would be superior to any product currently on the market. However, progress in research and development has been slow, and Chang is unsure whether her staff can produce the microprocessor in time. If they succeed in developing the microprocessor (probability p1), there is an excellent chance (probability p2) that Chang’s company will win the $1 million Olympic contract. If they do not, there is a small chance (probability p3) that she will still be able to win the same contract with an alternative but inferior timing system that has already been developed.

If she continues the project, Chang must invest $200,000 in research and development. In addition, making a proposal (which she will decide whether to do after seeing whether the R&D is successful) requires developing a prototype timing system at an additional cost. This additional cost is $50,000 if R&D is successful (so that she can develop the new timing system), and it is $40,000 if R&D is unsuccessful (so that she needs to go with the older timing system). Finally, if Chang wins the contract, the finished product will cost an additional $150,000 to produce.

a. Develop a decision tree that can be used to solve Chang’s problem. You can assume in this part of the problem that she is using EMV (of her net profit) as a decision criterion. Build the tree so that she can enter any values for p1, p2, and (in input cells) and automatically see her optimal EMV and optimal strategy from the tree.

b. If p2 = 0.8 and p3 = 0.1, what value of p1 makes Chang indifferent between abandoning the project and going ahead with it?

c. How much would Chang benefit if she knew for certain that the Olympic organization would guarantee her the contract? (This guarantee would be in force only if she were successful in developing the product.) Assume p1 = 0.4, p2 = 0.8, and p3 = 0.1.

d. Suppose now that this is a relatively big project for Chang. Therefore, she decides to use expected utility as her criterion, with an exponential utility function. Using some trial and error, see which risk tolerance changes her initial decision from “go ahead” to “abandon” when p1 = 0.4, p2 = 0.8, and p3 = 0.1.

Still stressed from student homework?
Get quality assistance from academic writers!

Order your essay today and save 25% with the discount code LAVENDER