d) Compute a 99% confidence interval for the mean of taxes.e) Compute a 95% confidence interval for the mean of taxes.f) Compute a 90% confidence interval for the mean of taxes.g) What happens to the confidence interval for the mean of taxes as we change the confidence level?2. Using the data for home selling prices attached, test a realtor’s claim that the average age of all homes in the area from which the random sample is drawn from is less than 30 years. Assume the distribution of ages of homes follow an approximately normal distribution.
Show all the seven steps and include the p-value.3. Using the data set for Homes attached, use the selling prices and the list prices of the homes sold to test the claim that the housing market is so hot that there is no difference between selling prices and list prices. Use a .05 significance level.Be sure to identify all the seven steps and to state your conclusion in the context of the problem.
>Sheet 00000
00
04
27 9 3 3
4 2 00
1 9 4 2 9900
8 4 2 900
66
6 3 2 0000
34 72
7 3 2 35 5
8 3 1 5000
2 19 9 4 2 40 9 4 3 9000
20 10 4 2 6 2 2 299000 48
44 7 3 1 9 4 3 6 8 4 2 00
49 5 3 1 21 7 3 2 49 8 3 2 14 11 4 3 4
64 7 3 1 44 6 3 1 275000 44 4 2 1 32 9 3 2 19 10 4 4 1800 47 8 2 1 1 29 10 4 3 0.9 6 3 1 499000 62 6 3 2 3
52 7 3 1 36 8 3 3 6 11 4 2 42 8 4 2 2 25 7 3 2 46 10 5 2 49 6 3 1 24 6 3 1 0.68 44 6 2 1 53 6 3 2 0.83 33 8 4 2 6 2 2 479000 2400 6 8 4 2
2
1
Selling Price
List Price
Area
Acres
Age
Taxes
Rooms
Bedrooms
Baths (full)
0
4
41
40
2
7
2.27
4
9
20
3
370000
379000
209
6
0.7
5
21
4
11
8
38
25
389900
2737
36
6072
300000
29
1800
0.43
34
40
24
305000
3
19
10
3.6
69
35
62
32
319900
1820
1.7
46
321000
328900
2700
0.81
3
64
44
450000
2316
6256
377500
385000
2448
1.5
5469
460000
47
3040
1.09
6740
265000
275000
1500
1.6
39
4046
299000
14
0.
42
3481
385000 379000
2400
0.89
33
4411
430000
435000
2200
4.79
5714
21
49
219900
1635
0.25
2560
475000
485000
2224
11.58
7885
280000
289000
1738
0.46
3011
457000
499900
3432
1.84
9809
210000
224900
1175
0.9
1367
272500
274900
1393
1.39
2317
268000
1196
0.83
3360
300000 319900
1860
0.57
4294
477000
479000
3867
1.1
9135
29
2000
294900
0.
52
3690
379000
383900
2722
6283
295000
299900
2240
144
3286
499000
2174
5.98
3894
292000 299000
1650
2.9
3476
305000 299900 2000
0.33
4146
520000
529700
3350
1.
53
8350
308000
320000
1776
0.63
4584
316000
310000
1850
4380
355500
362500
2600
0.44
4009
225000
229000
1300
0.62
3047
270000
290000
1352
0.68
2801
253000
259900
1312
4048
310000
314900
1664
1.69
2940
300000
309900
1700
4281
295000 295000 1650 2.9 34
4299
478000
2.14
6688
Sheet2
Sheet3