Need help with a Statistics Case Study that covers the following subtopics
Executive Summary
Table of contents
Case background
Goals
Body of analysis
Alternative solutions
Implementation Plan
Conclusion
Recommendation
References
Appendices.
I have attached the calculations and data needed to create the case study as well as the outline for the case. Thanks
OUTLINE
Case Background
Lenovo is a US$34 billion personal technology company and the world’s largest PC vendor. They have more than 33,000 employees in more than 60 countries serving customers in more than 160 countries. A global Fortune 500 company, Lenovo has headquarters is in Beijing, China and Morrisville, North Carolina, U.S.
Goal
You have been asked by CFO of Lenovo to develop the most accurate method for forecasting Lenovo sales on quarterly basis. You have been provided with sales figures of the past 6 years for each quarter that are publicly available on investor relations page of Lenovo website.
Body of the Analysis
1. Plot time series and comment on its pattern.
2. Develop time series decomposition. Start by using four quarters moving average and centered moving average to develop indexes for each quarter. Then deseasonalize revenue and develop linear and quadratic estimated regression equations.
3. Forecast sales for all past years and also the next four quarters using both regression equations
4. Plot forecasted sales using both methods with the actual sales on a graph and comment on it.
5. Calculate mean square error of linear and quadratic regression models and comment on the results.
Alternative Solutions
1. Instead of decomposing time series, use actual sales that are not seasonally adjusted and develop additional data using dummy variables to reflect seasonability of each quarter.
2. Develop estimated quadratic regression equation with dummy variables.
3. Use quadratic regression model equation with dummy variables to forecast past sales and sales for the next four quarters.
4. Plot forecasted sales on the same graph and compare it with the actual sales and results from time decomposition methods.
5. Calculate mean square error using dummy variables method and compare results with MSE of time decomposition models. Comment on the results.
Implementation plan
Develop plan for Lenovo to implement new forecasting method that you chose as the most accurate and discuss implementation through the entire corporation and its business units.
Recommendations
Recommend the most accurate method of forecasting for Lenovo based on your analysis. Comment on benefits but also mention shortcomings.
David Borovka | Milcent Taruwinga BUSN5011 Case Study – Forecasting for Lenovo
>time series decomposition
 	moving	 00
 -quarter
 	average	  forec. Quad.
 0 -0 0, 2007
 ,0 ,6 0
 ,682
 ,7 ,914,7  2007-08
 ,3 ,133,379,896
 7,664,392
  2007-08
  2007-08
 35.75
 9,234
 ,522,182
 ,807
 9629452
 	x				 	x					 	total MSE 	x					 	x					 	x	 					Q1	Q2	Q3	Q4 							1.086050909	0.8912715037 	0.9896758547	0.7911116238 					0.9508756804	1.0326824448	1.0904980833	0.9019424106 				1.0038408821	1.0810081717	1.0569733588	0.8347672546 					0.9695830789	1.0292251135	1.0926061688 actual revenue	 	Q1 2008-09	Q2 2008-09	Q3 2008-09	Q4 2008-09	Q1 2009-10	Q2 2009-10	Q3 2009-10	Q4 2009-10	Q1 2010-11	Q2 2010-11	Q3 2010-11	Q4 2010-11	Q1 2011-12	Q2 2011-12	Q3 2011-12	Q4 2011-12	Q1 201	2-13	Q2 2012-13	Q3 2012-13	Q4 2012-13	Q1 2013-14	Q2 2013-14	Q3 2013-14	Q4 2013-14	Q1 2014-15	3813096	4310323	4493881	3734203	4212634	4326225	3591287	2770785	3440778	4087231	4759414	4317392	5146672	5759983	5808331	4879385	5919916	7786386	8371858	7496278	8009696	8672601	9358746	7832358	8787098	qudratic forecast	Q1 2007-08	Q2 2007-08	Q3 2007-08	Q4 2007-08	Q1 2008-09	Q2 2008-09	Q3 2008-09	Q4 2008-09	Q1 2009-10	Q2 2009-10	Q3 2009-10	Q4 2009-10	Q1 2010-11	Q2 2010-11	Q3 2010-11	Q4 2010-11	Q1 2011-12	Q2 2011-12	Q3 2011-12	Q4 2011-12	Q1 2012-13	Q2 2012-13	Q3 2012-13	Q4 2012-13	Q1 2013-14	Q2 2013-14	Q3 2013-14	Q4 2013-14	Q1 2014-15	3895621.7453800002	3848799.2997599998	3827714.6891399999	3832367.9135200004	3862758.9729000004	3918887.8672799999	4000754.5966600003	4108359.1610400002	4241701.5604200009	4400781.7948000003	4585599.8641799996	4796155.7685599998	5032449.5079399999	5294481.082320001	5582250.4917000011	5895757.7360799992	6235002.8154599993	6599985.7298400002	6990706.4792200001	7407165.0636	7849361.4829799999	8317295.7373599987	8810967.8267400004	9330377.7511199992	9875525.5105000008	10446411.104880001	11043034.534260001	11665395.798640002	12313494.898019999	linear forecast	Q1 2007-08	Q2 2007-08	Q3 2007-08	Q4 2007-08	Q1 2008-09	Q2 2008-09	Q3 2008-09	Q4 2008-09	Q1 2009-10	Q2 2009-10	Q3 2009-10	Q4 2009-10	Q1 2010-11	Q2 2010-11	Q3 2010-11	Q4 2010-11	Q1 2011-12	Q2 2011-12	Q3 2011-12	Q4 2011-12	Q1 2012-13	Q2 2012-13	Q3 2012-13	Q4 2012-13	Q1 2013-14	Q2 2013-14	Q3 2013-14	Q4 2013-14	Q1 2014-15	2711682	2960845	3210008	3459171	3708334	3957497	4206660	4455823	4704986	4954149	5203312	5452475	5701638	5950801	6199964	6449127	6698290	6947453	7196616	7445779	7694942	7944105	8193268	8442431	8691594	8940757	9189920	9439083	9688246	  method	3656400.29	4271731.8899999997	4262650.18	3121254.4699999997	3645892.8899999997	4360908.41	4451510.620000001	3409798.83	4034121.17	4848820.6100000003	5039106.74	4097078.87	4821085.13	5735468.4900000002	6025438.540000001	5183094.59	6006784.7699999996	7020852.0499999998	7410506.0199999996	6667845.9900000002	7591220.0899999999	8704971.290000001	9194309.1799999997	8551333.0700000003	9574391.0900000017	10787826.210000001	11376848.02	10833555.83	11956297.770000001 	MSE 	1	0	0	 	0	1	0	  – 77,389.79*time period +  *time period^2 + 489,883.8*q1 +  *q2 +  *q3
 	3,231,445.79	 	12,460.49	 	1,145,223.72	1,151,229.35 actual revenue	Q1 2007-08	Q2 2007-08	Q3 2007-08	Q4 2007-08	Q1 2008-09	Q2 2008-09	Q3 2008-09	Q4 2008-09	Q1 2009-10	Q2 2009-10	Q3 2009-10	Q4 2009-10	Q1 2010-11	Q2 2010-11	Q3 2010-11	Q4 2010-11	Q1 2011-12	Q2 2011-12	Q3 2011-12	Q4 2011-12	Q1 201	2-13	Q2 2012-13	Q3 2012-13	Q4 2012-13	Q1 2013-14	Q2 2013-14	Q3 2013-14	Q4 2013-14	Q1 2014-15	3813096	4310323	4493881	3734203	4212634	4326225	3591287	2770785	3440778	4087231	4759414	4317392	5146672	5759983	5808331	4879385	5919916	7786386	8371858	7496278	8009696	8672601	9358746	7832358	8787098	qudratic forecast	Q1 2007-08	Q2 2007-08	Q3 2007-08	Q4 2007-08	Q1 2008-09	Q2 2008-09	Q3 2008-09	Q4 2008-09	Q1 2009-10	Q2 2009-10	Q3 2009-10	Q4 2009-10	Q1 2010-11	Q2 2010-11	Q3 2010-11	Q4 2010-11	Q1 2011-12	Q2 2011-12	Q3 2011-12	Q4 2011-12	Q1 2012-13	Q2 2012-13	Q3 2012-13	Q4 2012-13	Q1 2013-14	Q2 2013-14	Q3 2013-14	Q4 2013-14	Q1 2014-15	3895621.7453800002	3848799.2997599998	3827714.6891399999	3832367.9135200004	3862758.9729000004	3918887.8672799999	4000754.5966600003	4108359.1610400002	4241701.5604200009	4400781.7948000003	4585599.8641799996	4796155.7685599998	5032449.5079399999	5294481.082320001	5582250.4917000011	5895757.7360799992	6235002.8154599993	6599985.7298400002	6990706.4792200001	7407165.0636	7849361.4829799999	8317295.7373599987	8810967.8267400004	9330377.7511199992	9875525.5105000008	10446411.104880001	11043034.534260001	11665395.798640002	12313494.898019999	linear forecast	Q1 2007-08	Q2 2007-08	Q3 2007-08	Q4 2007-08	Q1 2008-09	Q2 2008-09	Q3 2008-09	Q4 2008-09	Q1 2009-10	Q2 2009-10	Q3 2009-10	Q4 2009-10	Q1 2010-11	Q2 2010-11	Q3 2010-11	Q4 2010-11	Q1 2011-12	Q2 2011-12	Q3 2011-12	Q4 2011-12	Q1 2012-13	Q2 2012-13	Q3 2012-13	Q4 2012-13	Q1 2013-14	Q2 2013-14	Q3 2013-14	Q4 2013-14	Q1 2014-15	2711682	2960845	3210008	3459171	3708334	3957497	4206660	4455823	4704986	4954149	5203312	5452475	5701638	5950801	6199964	6449127	6698290	6947453	7196616	7445779	7694942	7944105	8193268	8442431	8691594	8940757	9189920	9439083	9688246	dummy variables method	3656400.29	4271731.8899999997	4262650.18	3121254.4699999997	3645892.8899999997	4360908.41	4451510.620000001	3409798.83	4034121.17	4848820.6100000003	5039106.74	4097078.87	4821085.13	5735468.4900000002	6025438.540000001	5183094.59	6006784.7699999996	7020852.0499999998	7410506.0199999996	6667845.9900000002	7591220.0899999999	8704971.290000001	9194309.1799999997	8551333.0700000003	9574391.0900000017	10787826.210000001	11376848.02	10833555.83	11956297.770000001	 01
 + *X1+ *X2+ *X3+ *X4+ *X1^2+ *X2^2+ *X3^2+ *X4^2
 	time period	q1	q2	q3	Revenue US’000 	0.000	 	-0.350	 		Observations	time period	q1	q2	q3	Revenue US’000	2 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 	 
 moving 
centered 
seasonal- 
 average 
irregular 
 
 Revenue US’
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 0 
 
 
 
 
 
 time period 
 FY Quarter 
 
 
 Revenue US’000 
 
 4 
inde
 
 
 
 
 
 
 
 
 
 
 x 
deseasonalized 
forecast quadratic 
 
 MSE 
forecast linear 
MSE forec. lin. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1 
 Q1 
 20 
 7 
 8 
For the quarter ended Jun 
 
 3 
3,8
 
 13 
 9 
 6 
3,907,389 
3,89
 
 5 
 22 
138,465,
 
 18 
2,7
 
 11 
1,4
 
 29 
 14 
 19 
	2	
 
 Q2 
 For the quarter ended Sept 30, 2007 
4,3
 
 10 
 23 
4087875.75 
4,013,5
 
 21 
3,848,799 
 
 27 
2,960,845 
1,108,
 
 12 
	3	
 
 Q3 
 For the quarter ended Dec 31, 2007 
 4,493,881 
4187760.
 
 
 
 
 
 
 
 
 
 
 
 25 
4137818 
 1.086050909 
4,206,786 
3,827,7
 
 15 
143,695,070,011 
3,210,008 
993,566,410,982 
	4	
 
 Q4 
 For the quarter ended Mar 31, 2008 
 3,734,203 
419
 
 17 
4189748 
 0.8912715037 
4,
 
 28 
3,832,368 
208,7
 
 26 
3,459,171 
689,004,404,474 
	5	
 
 Q1 2008-09 
 For the quarter ended Jun 30, 2008 
 4,212,634 
3966087.25 
4078911.5 
 1.0327838689 
4,3
 
 16 
3,862,759 
206,159,537,808 
3,708,334 
370,239,293,760 
	6	
 
 Q2 2008-09 
 For the quarter ended Sept 30, 2008 
 4,326,225 
3725232.75 
3845660 
1.1
 
 24 
4,028,328 
3,918,888 
11,977,239,878 
3,957,497 
5,017,093,489 
	7	
 
 Q3 2008-09 
 For the quarter ended Dec 31, 2008 
 3,591,287 
3532268.75 
3628750.75 
 0.9896758547 
3,361,855 
4,000,755 
408,192,803,280 
4,206,660 
713,695,631,714 
	8	
 
 Q4 2008-09 
 For the quarter ended Mar 31, 2009 
 2,770,785 
3472520.25 
3502394.5 
 0.7911116238 
3,182,619 
4,108,359 
856,995,087,993 
4,455,823 
1,621,048,758,764 
	9	
 
 Q1 2009-10 
 For the quarter ended Jun 30, 2009 
 3,440,778 
3764552 
3618536.125 
 0.9508756804 
3,525,864 
4,241,702 
512,423,510,421 
4,704,986 
1,390,328,851,506 
	10	
 
 Q2 2009-10 
 For the quarter ended Sept 30, 2009 
 4,087,231 
4151203.75 
3957877.875 
 1.0326824448 
3,805,791 
4,400,782 
354,013,846,098 
4,954,149 
1,318,725,710,544 
	11	
 
 Q3 2009-10 
 For the quarter ended Dec 31, 2009 
 4,759,414 
4577677.25 
4364440.5 
 1.0904980833 
4,455,355 
4,585,600 
16,963,662,532 
5,203,312 
559,439,317,153 
	12	
 
 Q4 2009-10 
 For the quarter ended Mar 31, 2010 
 4,317,392 
4995865.25 
4786771.25 
 0.9019424106 
4,959,105 
4,796,156 
26,552,392,908 
5,452,475 
243,414,135,896 
	13	
 
 Q1 2010-11 
 For the quarter ended Jun 30, 2010 
 5,146,672 
5258094.5 
5126979.875 
 1.0038408821 
5,273,942 
5,032,450 
58,318,843,709 
5,701,638 
182,923,478,807 
	14	
 
 Q2 2010-11 
 For the quarter ended Sep 30, 2010 
 5,759,983 
5398592.75 
5328343.625 
 1.0810081717 
5,363,360 
5,294,481 
4,744,344,819 
5,950,801 
345,086,591,444 
	15	
 
 Q3 2010-11 
 For the quarter ended Dec 31, 2010 
 5,808,331 
5591903.75 
5495248.25 
 1.0569733588 
5,437,261 
5,582,250 
21,021,841,668 
6,199,964 
581,715,282,116 
	16	
 
 Q4 2010-11 
 For the quarter ended Mar 31, 2011 
 4,879,385 
6098504.5 
5845204.125 
 0.8347672546 
5,604,629 
5,895,758 
84,755,771,350 
6,449,127 
713,176,379,971 
	17	
 
 Q1 2011-12 
 For the quarter ended Jun 30, 2011 
 5,919,916 
6739386.25 
6418945.375 
 0.9222567967 
6,066,308 
6,235,003 
28,458,019,542 
6,698,290 
399,401,543,455 
	18	
 
 Q2 2011-12 
 For the quarter ended Sep 30, 2011 
 7,786,386 
7393609.5 
7066497.875 
 1.1018733944 
7,250,229 
6,599,986 
422,815,783,085 
6,947,453 
91,673,060,645 
	19	
 
 Q3 2011-12 
 For the quarter ended Dec 31, 2011 
 8,371,858 
7916054.5 
7654832 
 1.0936697239 
7,837,016 
6,990,706 
716,238,996,676 
7,196,616 
410,111,548,372 
	20	
 
 Q4 2011-12 
 For the quarter ended Mar 31, 2012 
 7,496,278 
8137608.25 
8026831.375 
 0.9339025139 
8,610,483 
7,407,165 
1,447,972,902,754 
7,445,779 
1,356,534,291,317 
	21	
 
 Q1 2012-13 
 For the quarter ended Jun 30, 2012 
 8,009,696 
8384330.25 
8260969.25 
 0.9695830789 
8,207,765 
7,849,361 
128,453,287,387 
7,694,942 
262,987,724,621 
	22	
 
 Q2 2012-13 
 For the quarter ended Sep 30, 2012 
 8,672,601 
8468350.25 
8426340.25 
 1.0292251135 
8,075,420 
8,317,296 
58,503,715,322 
7,944,105 
17,243,714,461 
	23	
 
 Q3 2012-13 
 For the quarter ended Dec 31, 2012 
 9,358,746 
8662700.75 
8565525.5 
 1.0926061688 
8,760,855 
8,810,968 
2,511,251,657 
8,193,268 
322,155,498,058 
	24	
 
 Q4 2012-13 
 For the quarter ended Mar31, 2013 
 7,832,358 
8,996,516 
9,330,378 
111,463,963,870 
8,442,431 
307,009,697,621 
	25	
 
 Q1 2013-14 
 For the quarter ended Jun 30, 2013 
 8,787,098 
9,004,391 
9,875,526 
758,874,602,187 
8,691,594 
97,842,226,477 
	26	
 
 Q2 2013-14 
 For the quarter ended Sep 30, 2013 
forecast 
for the
upcoming
quarters:10,446,411 
264,684,193,689 
8,940,757 
621,207,328,990 
	27	
 
 Q3 2013-14 
 For the quarter ended Dec 31, 2013 
11,043,035 
 total MSE 
9,189,920 
	28	
 
 Q4 2013-14 
 For the quarter ended Mar 31, 2014 
11,665,396 
9,439,083 
	29	
 
 Q1 2014-15 
 For the quarter ended Jun 30, 2014 
12,313,495 
9,688,246 
 
LINEST (qudratic) 
 
12868.9174834035 
-85429.1981206864 
3968182.02604002 
Seasonal Indexes 
 
 x^2 
 
 constant 
 
estimated quadratic regression equation: 
 
ŷ = 3,968,182 + 12,869 x^2 – 8,542 x 
							1.0327838689	
 
1.1249629452 
 
LINEST (linear) 
 
249162.656447805 
2462518.6804818 
		x	constant				0.9222567967	1.1018733944	1.0936697239	0.9339025139 
 
estimated linear regression equation: 
 
ŷ = 2,462,519 + 249,163 x 
0.9758680614 
1.0739504139 
1.0682456831 
0.8705990613 
Q1 2007-08 
Q2 2007-08 
Q3 2007-08 
Q4 2007-08 
 
 dummy variables 
dummy variables
								dummy variables	dummy variables	dummy variables 
	time period	FY Quarter		Revenue US’000	
 
 
 
 
 
 q1 
 
 
 
 
 q2 
 
 
 
 
 q3 
quadratic forecast 
Forecast error 
	1	Q1 2007-08	
 
For the quarter ended Jun 30, 2007 
3,813,096 
3,656,400 
156,695.71 
24,553,545,532.40 
	2	Q2 2007-08	For the quarter ended Sept 30, 2007	
 
4,310,323 
4,271,732 
38,591.11 
1,489,273,771.03 
	3	Q3 2007-08	For the quarter ended Dec 31, 2007	4,493,881	0	0	1	
 
4,262,650 
231,230.82 
53,467,692,117.87 
	4	Q4 2007-08	For the quarter ended Mar 31, 2008	3,734,203	0	0	0	
 
3,121,254 
612,948.53 
375,705,900,429.16 
	5	Q1 2008-09	For the quarter ended Jun 30, 2008	4,212,634	1	0	0	
 
3,645,893 
566,741.11 
321,195,485,764.03 
	6	Q2 2008-09	For the quarter ended Sept 30, 2008	4,326,225	0	1	0	
 
4,360,908 
–   34,683.41 
1,202,938,929.23 
	7	Q3 2008-09	For the quarter ended Dec 31, 2008	3,591,287	0	0	1	
 
4,451,511 
–   860,223.62 
739,984,676,405.91 
	8	Q4 2008-09	For the quarter ended Mar 31, 2009	2,770,785	0	0	0	
 
3,409,799 
–   639,013.83 
408,338,674,931.27 
	9	Q1 2009-10	For the quarter ended Jun 30, 2009	3,440,778	1	0	0	
 
4,034,121 
–   593,343.17 
352,056,117,385.65 
	10	Q2 2009-10	For the quarter ended Sept 30, 2009	4,087,231	0	1	0	
 
4,848,821 
–   761,589.61 
580,018,734,059.95 
	11	Q3 2009-10	For the quarter ended Dec 31, 2009	4,759,414	0	0	1	
 
5,039,107 
–   279,692.74 
78,228,028,808.71 
	12	Q4 2009-10	For the quarter ended Mar 31, 2010	4,317,392	0	0	0	
 
4,097,079 
220,313.13 
48,537,875,250.40 
	13	Q1 2010-11	For the quarter ended Jun 30, 2010	5,146,672	1	0	0	
 
4,821,085 
325,586.87 
106,006,809,916.40 
	14	Q2 2010-11	For the quarter ended Sep 30, 2010	5,759,983	0	1	0	
 
5,735,468 
24,514.51 
600,961,200.54 
	15	Q3 2010-11	For the quarter ended Dec 31, 2010	5,808,331	0	0	1	
 
6,025,439 
–   217,107.54 
47,135,683,924.85 
	16	Q4 2010-11	For the quarter ended Mar 31, 2011	4,879,385	0	0	0	
 
5,183,095 
–   303,709.59 
92,239,515,057.97 
	17	Q1 2011-12	For the quarter ended Jun 30, 2011	5,919,916	1	0	0	
 
6,006,785 
–   86,868.77 
7,546,183,201.31 
	18	Q2 2011-12	For the quarter ended Sep 30, 2011	7,786,386	0	1	0	
 
7,020,852 
765,533.95 
586,042,228,602.60 
	19	Q3 2011-12	For the quarter ended Dec 31, 2011	8,371,858	0	0	1	
 
7,410,506 
961,351.98 
924,197,629,449.92 
	20	Q4 2011-12	For the quarter ended Mar 31, 2012	7,496,278	0	0	0	
 
6,667,846 
828,432.01 
686,299,595,192.64 
	21	Q1 2012-13	For the quarter ended Jun 30, 2012	8,009,696	1	0	0	
 
7,591,220 
418,475.91 
175,122,087,250.33 
	22	Q2 2012-13	For the quarter ended Sep 30, 2012	8,672,601	0	1	0	
 
8,704,971 
–   32,370.29 
1,047,835,674.68 
	23	Q3 2012-13	For the quarter ended Dec 31, 2012	9,358,746	0	0	1	
 
9,194,309 
164,436.82 
27,039,467,771.71 
	24	Q4 2012-13	For the quarter ended Mar31, 2013	7,832,358	0	0	0	
 
8,551,333 
–   718,975.07 
516,925,151,281.51 
	25	Q1 2013-14	For the quarter ended Jun 30, 2013	8,787,098	1	0	0	
 
9,574,391 
–   787,293.09 
619,830,409,561.75 
	26	Q2 2013-14	For the quarter ended Sep 30, 2013	x	0	1	0	
 
10,787,826 
–   1 
270,992,500,059 
	27	Q3 2013-14	For the quarter ended Dec 31, 2013	x	0	0	1	
 
11,376,848 
	28	Q4 2013-14	For the quarter ended Mar 31, 2014	x	0	0	0	
 
10,833,556 
	29	Q1 2014-15	For the quarter ended Jun 30, 2014	x	1	0	0	
 
11,956,298 
 
Equation of the model with dummy variables: 
 
Revenue US’000 = 
 3,231,445.79 
12,460.49 
1,145,223.72 
1,151,229.35 
		constant	x	x^2	q1	q2	q3 
 
coeficients 
-77,389.79 
489,883.80 
Nonlinear regression
 
XLSTAT 2013.5.05 – Nonlinear regression – on 12/11/2013 at 7:06:16 PM 
 
Y / Quantitative: Workbook = Book1.xlsx / Sheet = dummy variables / Range = ‘dummy variables’!$D$3:$D$28 / 25 rows and 1 column 
 
X / Quantitative: Workbook = Book1.xlsx / Sheet = dummy variables / Range = ‘dummy variables’!$A$3:$B$30,’dummy variables’!$E$3:$H$30 / 25 rows and 4 columns 
 
Stop conditions: Iterations = 200 / Convergence = 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 0.000 
 
Function: Y =  
 pr1 
pr2 
pr3 
pr4 
pr5 
pr6 
pr7 
pr8 
pr9 
 
Summary statistics: 
Variable 
 
 Observations 
Obs. with missing data 
Obs. without missing data 
Minimum 
Maximum 
Mean 
Std. deviation 
		Revenue US’000	25	0	25	
 
277078
 5.000 
935874
 6.000 
5667462.280 
1998003.655 
		time period	25	0	25	
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1.000 
 
 25.000 
1
 3.000 
7.360 
		q1	25	0	25	0.000	1.000	
 
0.280 
0.458 
		q2	25	0	25	0.000	1.000	
 
 0.240 
 0.436 
		q3	25	0	25	0.000	1.000	0.240	0.436 
 
Correlation matrix: 
 
Variables 
		time period	1.000	
 
 -0.000 
 -0.078 
 0.889 
		q1	-0.000	1.000	
 
 
 
 -0.350 
 -0.016 
		q2	-0.078	-0.350	1.000	
 
 -0.316 
 0.045 
		q3	0.000	-0.350	-0.316	1.000	
 
 0.114 
		Revenue US’000	0.889	-0.016	0.045	0.114	1.000 
 
Nonlinear regression of variable Revenue US’000: 
 
Goodness of fit statistics: 
		Observations	25.000 
 
DF 
 16.000 
 
R² 
0.929 
 
SSE 
6774812501447.660 
		MSE	
 
423425781340.479 
 
RMSE 
650711.750 
 
Model parameters: 
 
Parameter 
Value 
Standard error 
		pr1	
 
3231445.787 
503915.136 
		pr2	
 
-77389.785 
76089.389 
		pr3	
 
489883.798 
365436.980 
		pr4	
 
1145223.724 
377434.649 
		pr5	
 
1151229.348 
376136.614 
		pr6	
 
12460.486 
2842.214 
		pr7	0.000	0.000 
		pr8	0.000	0.000 
		pr9	0.000	0.000 
 
Equation of the model: 
 
Revenue US’000 = 3231445.78663446-77389.7850241539*time period+489883.797953054*q1+1145223.72360249*q2+1151229.3482176*q3+12460.4864163614*time period^2 
 
Predictions and residuals: 
Pred(Revenue US’000) 
Residual
s
1.000 1.000 0.000 0.000
0.000 1.000 0.000
3.000 0.000 0.000 1.000
0.000 0.000 0.000
5.000 1.000 0.000 0.000
6.000 0.000 1.000 0.000
0.000 0.000 1.000
0.000 0.000 0.000
1.000 0.000 0.000
0.000 1.000 0.000
0.000 0.000 1.000
0.000 0.000 0.000
1.000 0.000 0.000
14.000 0.000 1.000 0.000
0.000 0.000 1.000
16.000 0.000 0.000 0.000
1.000 0.000 0.000
0.000 1.000 0.000
0.000 0.000 1.000
0.000 0.000 0.000
1.000 0.000 0.000
0.000 1.000 0.000
23.000 0.000 0.000 1.000
0.000 0.000 0.000
25.000 1.000 0.000 0.000
Pred(Revenue US’000) / Revenue US’000
Active	3656400.285979717	4271731.8858540785	4262650.1575268516	3121254.4291996225	3645892.8198757749	4360908.3110810276	4451510.4740846911	3409798.6370883537	4034120.919095397	4848820.3016315401	5039106.3559660958	4097078.4103006497	4821084.5836385842	5735467.8575056195	6025437.8031710647	5183093.7488365099	6006783.8135053348	7020850.9787032614	7410504.8156995988	6667844.6526959343	7591218.6086956523	8704969.6652244683	9194307.3935516961	8551331.1218789238	9574388.9692095332	3813096	4310323	4493881	3734203	4212634	4326225	3591287	2770785	3440778	4087231	4759414	4317392	5146672	5759983	5808331	4879385	5919916	7786386	8371858	7496278	8009696	8672601	9358746	7832358	8787098	2000000	10000	000	2000000	10000000	Pred(Revenue US’000)
Revenue US’000
Active	Obs1	Obs2	Obs3	Obs4	Obs5	Obs6	Obs7	Obs8	Obs9	Obs10	Obs11	Obs12	Obs13	Obs14	Obs15	Obs16	Obs17	Obs18	Obs19	Obs20	Obs21	Obs22	Obs23	Obs24	Obs25	156695.71402028296	38591.114145921543	231230.84247314837	612948.57080037752	566741.18012422509	-34683.311081027612	-860223.47408469114	-639013.63708835375	-593342.919095397	-761589.30163154006	-279692.35596609581	220313.5896993503	325587.41636141576	24515.142494380474	-217106.8031710647	-303708.74883650988	-86867.81350533478	765535.02129673865	961353.18430040125	828433.34730406571	418477.39130434766	-32368.665224468336	164438.60644830391	-718973.12187892385	-787290.96920953318	Observations
Residual
