Question 1 | 5 points | Save |
Question 2 |
Question 3 |
Question 4 |
Question 5 |
Question 6 |
Question 7 |
Question 8 |
Question 9 |
Question 10 |
Question 11 |
Question 12 |
Question 13 |
Question 14 |
Question 15 |
Question 16 |
Question 17 |
Question 18 |
Question 19 |
Question 20 |
[removed] [removed]
Qu
esti
on
1
5 points
Sa
ve
Find the indicated intercept(s) of the graph of the function.
x-intercepts of
f(x) =
(9, 0)
(-9, 0)
(0, 0) and (-9, 0)
(0, 0) and (9, 0)
Qu
esti
on
2
5 points
Sa
ve
Find all zeros of the function and write the polynomial as a
product of linear factors.
f(x) = x4 + 6×3 + 17×2 + 54x + 72
f(x) = (x – 4)(x + 2)(x – 3)(x + 3)
f(x) = (x + 4)(x + 2)(x – 3i)(x + 3i)
f(x) = (x – 1)(x – 8)(x – 3i)(x + 3i)
f(x) = (x – i )(x + i )(x – 3)(x +3)
Qu
esti
on
3
5 points
Sa
ve
State whether the function is a polynomial function or not. If it is,
give its degree. If it is not, tell why not.
4(x – 1)12(x + 1)9
Yes; degree 48
Yes; degree 21
Yes; degree 4
Yes; degree 12
javascript:saveItem(‘_10020909_1′,’1’)
javascript:saveItem(‘_10020909_1′,’1’)
javascript:saveItem(‘_10020910_1′,’2’)
javascript:saveItem(‘_10020910_1′,’2’)
javascript:saveItem(‘_10020911_1′,’3’)
javascript:saveItem(‘_10020911_1′,’3’)
Qu
esti
on
3
5 points
Sa
ve
State whether the function is a polynomial function or not. If it is,
give its degree. If it is not, tell why not.
4(x – 1)12(x + 1)9
Yes; degree 48
Yes; degree 21
Yes; degree 4
Yes; degree 12
Qu
esti
on
4
5 points
Sa
ve
Find the x- and y-intercepts of f.
f(x) = (x + 2)(x – 3)(x + 3)
x-intercepts: -3, 3, 2; y-intercept: 18
x-intercepts: -2, -3, 3; y-intercept: 18
x-intercepts: -3, 3, 2; y-intercept: -18
x-intercepts: -2, -3, 3; y-intercept: -18�� Question 5�5 points �Save � �Give the equation of the ob
lique asymptote, if any, of the function.
f(x) =
y = x – 3
x = y – 3
y = x – 9
no oblique asymptotes
javascript:saveItem(‘_10020911_1′,’3’)
javascript:saveItem(‘_10020911_1′,’3’)
javascript:saveItem(‘_10020912_1′,’4’)
javascript:saveItem(‘_10020912_1′,’4’)
javascript:saveItem(‘_10020913_1′,’5’)
Qu
esti
on
6
5 points
Sa
ve
Find the indicated intercept(s) of the graph of the function.
y-intercept of f(x) =
(0, 3)
(0, 4)
Qu
esti
on
7
5 points
Sa
ve
Determine where the function is increasing and where it is
decreasing.
f(x) = -x2 – 4x + 5
increasing on (-∞, 9)
decreasing on (9, ∞)
increasing on (-2, ∞)
decreasing on (-∞, -2)
increasing on (-∞, -2)
decreasing on (-2, ∞)
increasing on (9, ∞)
decreasing on (-∞, 9)
javascript:saveItem(‘_10020914_1′,’6’)
javascript:saveItem(‘_10020914_1′,’6’)
javascript:saveItem(‘_10020915_1′,’7’)
javascript:saveItem(‘_10020915_1′,’7’)
Qu
esti
on
8
5 points
Sa
ve
Use the graph to find the horizontal asymptote, if any, of the
function.
y = 0
x = 2
y = 3
y = 0, y = 3
Qu
esti
on
9
5 points
Sa
ve
For the polynomial, list each real zero and its multiplicity.
Determine whether the graph crosses or touches the x-axis at each
x -intercept.
f(x) = 4(x – 1)3
– , multiplicity 4, touches x-axis; 1, multiplicity 3, crosses x-axis
, multiplicity 4, touches x-axis; -1, multiplicity 3, crosses x-axis
, multiplicity 4, crosses x-axis; -1, multiplicity 3, touches x-axis
– , multiplicity 4, crosses x-axis; 1, multiplicity 3, touches x-axis
javascript:saveItem(‘_10020916_1′,’8’)
javascript:saveItem(‘_10020916_1′,’8’)
javascript:saveItem(‘_10020917_1′,’9’)
javascript:saveItem(‘_10020917_1′,’9’)
Qu
esti
on
9
5 points
Sa
ve
For the polynomial, list each real zero and its multiplicity.
Determine whether the graph crosses or touches the x-axis at each
x -intercept.
f(x) = 4(x – 1)3
– , multiplicity 4, touches x-axis; 1, multiplicity 3, crosses x-axis
, multiplicity 4, touches x-axis; -1, multiplicity 3, crosses x-axis
, multiplicity 4, crosses x-axis; -1, multiplicity 3, touches x-axis
– , multiplicity 4, crosses x-axis; 1, multiplicity 3, touches x-axis
Qu
esti
on
10
5 points
Sa
ve
Use the x-intercepts to find the intervals on which the graph of f is
above and below the x-axis.
f(x) = (x – 2)2(x + 4)2
above the x-axis: (-4, 2)
below the x-axis: (-∞, -4), (2, ∞)
above the x-axis: no intervals
below the x-axis: (-∞, -4), (-4, 2), (2, ∞)
above the x-axis: (-∞, -4), (2, ∞)
below the x-axis: (-4, 2)
above the x-axis: (-∞, -4), (-4, 2), (2, ∞)
below the x-axis: no intervals
Qu
esti
on
11
5 points
Sa
ve
Solve.
While traveling in a car, the centrifugal force a passenger experiences
as the car drives in a circle varies jointly as the mass of the passenger
and the square of the speed of the car. If the a passenger experiences
a force of 162 newtons when the car is moving at a speed of 60
kilometers per hour and the passenger has a mass of 50 kilograms,
find the force a passenger experiences when the car is moving at 40
kilometers per hour and the passenger has a mass of 100 kilograms.
128 newtons
144 newtons
160 newtons
176 newtons
javascript:saveItem(‘_10020917_1′,’9’)
javascript:saveItem(‘_10020917_1′,’9’)
javascript:saveItem(‘_10020918_1′,’10’)
javascript:saveItem(‘_10020918_1′,’10’)
javascript:saveItem(‘_10020919_1′,’11’)
javascript:saveItem(‘_10020919_1′,’11’)
Qu
esti
on
11
5 points
Sa
ve
Solve.
While traveling in a car, the centrifugal force a passenger experiences
as the car drives in a circle varies jointly as the mass of the passenger
and the square of the speed of the car. If the a passenger experiences
a force of 162 newtons when the car is moving at a speed of 60
kilometers per hour and the passenger has a mass of 50 kilograms,
find the force a passenger experiences when the car is moving at 40
kilometers per hour and the passenger has a mass of 100 kilograms.
128 newtons
144 newtons
160 newtons
176 newtons
Qu
esti
on
12
5 points
Sa
ve
Use the graph to find the vertical asymptotes, if any, of the
function.
x = -3, x = 3, x = 0
x = -3, x = 3, y = 0
none
x = -3, x = 3
javascript:saveItem(‘_10020919_1′,’11’)
javascript:saveItem(‘_10020919_1′,’11’)
javascript:saveItem(‘_10020920_1′,’12’)
javascript:saveItem(‘_10020920_1′,’12’)
Qu
esti
on
12
5 points
Sa
ve
Use the graph to find the vertical asymptotes, if any, of the
function.
x = -3, x = 3, x = 0
x = -3, x = 3, y = 0
none
x = -3, x = 3
Qu
esti
on
13
5 points
Sa
ve
Solve the equation in the real number system.
2×4 – 2×3 + x2 – 5x – 10 = 0
�{-1, 2}�������{1, -2}�����
javascript:saveItem(‘_10020920_1′,’12’)
javascript:saveItem(‘_10020920_1′,’12’)
javascript:saveItem(‘_10020921_1′,’13’)
javascript:saveItem(‘_10020921_1′,’13’)
Qu
esti
on
15
5 points
Sa
ve
Find the vertex and axis of symmetry of the graph of the function.
f(x) = -5×2 – 2x – 2
; x = -5
; x =
(5, -2); x = 5
; x = –
Qu
esti
on
16
5 points
Sa
ve
Solve.
The power that a resistor must dissipate is jointly proportional to the
square of the current flowing through the resistor and the resistance of
the resistor. If a resistor needs to dissipate of power when
of current is flowing through the resistor whose resistance
is find the power that a resistor needs to dissipate when
of current are flowing through a resistor whose resistance is
63 watts
147 watts
84 watts
21 watts
Qu
esti
on
17
5 points
Sa
ve
Find all zeros of the function and write the polynomial as a
product of linear factors.
f(x) = x3 + 8×2 + 22x + 20
f(x) = (x + 2)(x + 3 + i)(x + 3 – i)
f(x) = (x + 2)(x + 3 + i)(x – 3 – i)
f(x) = (x – 1)(x + 3 + i )(x + 3 – i )
f(x) = (x + 1)(x + 3 + i )(x – 2 – i )
javascript:saveItem(‘_10020923_1′,’15’)
javascript:saveItem(‘_10020923_1′,’15’)
javascript:saveItem(‘_10020924_1′,’16’)
javascript:saveItem(‘_10020924_1′,’16’)
javascript:saveItem(‘_10020925_1′,’17’)
javascript:saveItem(‘_10020925_1′,’17’)
Qu
esti
on
17
5 points
Sa
ve
Find all zeros of the function and write the polynomial as a
product of linear factors.
f(x) = x3 + 8×2 + 22x + 20
f(x) = (x + 2)(x + 3 + i)(x + 3 – i)
f(x) = (x + 2)(x + 3 + i)(x – 3 – i)
f(x) = (x – 1)(x + 3 + i )(x + 3 – i )
f(x) = (x + 1)(x + 3 + i )(x – 2 – i )
Qu
esti
on
18
5 points
Sa
ve
Solve the inequality.
(x + 1)(x – 3) ≤ 0
(-∞, -1]
[-1, 3]
[3, ∞)
(-∞, -1] or [3, ∞)
Qu
esti
on
19
5 points
Sa
ve
Solve the inequality.
≥ 0
(-∞, -7) or [-2, 6) or [12, ∞)
(-∞, -7) or [12, ∞)
(-7, -2] or (6, 12]
(-∞, -7) or [-2, 0) or (0, 6) or [12, ∞)
javascript:saveItem(‘_10020925_1′,’17’)
javascript:saveItem(‘_10020925_1′,’17’)
javascript:saveItem(‘_10020926_1′,’18’)
javascript:saveItem(‘_10020926_1′,’18’)
javascript:saveItem(‘_10020927_1′,’19’)
javascript:saveItem(‘_10020927_1′,’19’)
Qu
esti
on
19
5 points
Sa
ve
Solve the inequality.
≥ 0
(-∞, -7) or [-2, 6) or [12, ∞)
(-∞, -7) or [12, ∞)
(-7, -2] or (6, 12]
(-∞, -7) or [-2, 0) or (0, 6) or [12, ∞)
Qu
esti
on
20
5 points
Sa
ve
Form a polynomial whose zeros and degree are given.
Zeros: -1, 1, – 2; degree 3
f(x) = x3 – 2×2 + x – 2 for a = 1
f(x) = x3 – 2×2 – x + 2 for a = 1
f(x) = x3 + 2×2 + x + 2 for a = 1
f(x) = x3 + 2×2 – x – 2 for a = 1
javascript:saveItem(‘_10020927_1′,’19’)
javascript:saveItem(‘_10020927_1′,’19’)
javascript:saveItem(‘_10020928_1′,’20’)
javascript:saveItem(‘_10020928_1′,’20’)
math 3.rtfd/10__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._10__#$!@%!#__spacer.gif
math 3.rtfd/11__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._11__#$!@%!#__spacer.gif
math 3.rtfd/12__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._12__#$!@%!#__spacer.gif
math 3.rtfd/13__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._13__#$!@%!#__spacer.gif
math 3.rtfd/14__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._14__#$!@%!#__spacer.gif
math 3.rtfd/15__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._15__#$!@%!#__spacer.gif
math 3.rtfd/16__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._16__#$!@%!#__spacer.gif
math 3.rtfd/17__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._17__#$!@%!#__spacer.gif
math 3.rtfd/18__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._18__#$!@%!#__spacer.gif
math 3.rtfd/19__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._19__#$!@%!#__spacer.gif
math 3.rtfd/1__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._1__#$!@%!#__spacer.gif
math 3.rtfd/20__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._20__#$!@%!#__spacer.gif
math 3.rtfd/21__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._21__#$!@%!#__spacer.gif
math 3.rtfd/22__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._22__#$!@%!#__spacer.gif
math 3.rtfd/23__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._23__#$!@%!#__spacer.gif
math 3.rtfd/24__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._24__#$!@%!#__spacer.gif
math 3.rtfd/25__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._25__#$!@%!#__spacer.gif
math 3.rtfd/26__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._26__#$!@%!#__spacer.gif
math 3.rtfd/27__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._27__#$!@%!#__spacer.gif
math 3.rtfd/28__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._28__#$!@%!#__spacer.gif
math 3.rtfd/29__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._29__#$!@%!#__spacer.gif
math 3.rtfd/2__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._2__#$!@%!#__spacer.gif
math 3.rtfd/30__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._30__#$!@%!#__spacer.gif
math 3.rtfd/31__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._31__#$!@%!#__spacer.gif
math 3.rtfd/32__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._32__#$!@%!#__spacer.gif
math 3.rtfd/33__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._33__#$!@%!#__spacer.gif
math 3.rtfd/34__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._34__#$!@%!#__spacer.gif
math 3.rtfd/35__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._35__#$!@%!#__spacer.gif
math 3.rtfd/36__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._36__#$!@%!#__spacer.gif
math 3.rtfd/37__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._37__#$!@%!#__spacer.gif
math 3.rtfd/38__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._38__#$!@%!#__spacer.gif
math 3.rtfd/39__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._39__#$!@%!#__spacer.gif
math 3.rtfd/3__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._3__#$!@%!#__spacer.gif
math 3.rtfd/40__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._40__#$!@%!#__spacer.gif
math 3.rtfd/41__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._41__#$!@%!#__spacer.gif
math 3.rtfd/42__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._42__#$!@%!#__spacer.gif
math 3.rtfd/43__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._43__#$!@%!#__spacer.gif
math 3.rtfd/44__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._44__#$!@%!#__spacer.gif
math 3.rtfd/45__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._45__#$!@%!#__spacer.gif
math 3.rtfd/46__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._46__#$!@%!#__spacer.gif
math 3.rtfd/47__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._47__#$!@%!#__spacer.gif
math 3.rtfd/48__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._48__#$!@%!#__spacer.gif
math 3.rtfd/49__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._49__#$!@%!#__spacer.gif
math 3.rtfd/4__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._4__#$!@%!#__spacer.gif
math 3.rtfd/50__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._50__#$!@%!#__spacer.gif
math 3.rtfd/51__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._51__#$!@%!#__spacer.gif
math 3.rtfd/52__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._52__#$!@%!#__spacer.gif
math 3.rtfd/53__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._53__#$!@%!#__spacer.gif
math 3.rtfd/54__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._54__#$!@%!#__spacer.gif
math 3.rtfd/55__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._55__#$!@%!#__spacer.gif
math 3.rtfd/56__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._56__#$!@%!#__spacer.gif
math 3.rtfd/57__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._57__#$!@%!#__spacer.gif
math 3.rtfd/58__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._58__#$!@%!#__spacer.gif
math 3.rtfd/59__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._59__#$!@%!#__spacer.gif
math 3.rtfd/5__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._5__#$!@%!#__spacer.gif
math 3.rtfd/60__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._60__#$!@%!#__spacer.gif
math 3.rtfd/61__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._61__#$!@%!#__spacer.gif
math 3.rtfd/62__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._62__#$!@%!#__spacer.gif
math 3.rtfd/63__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._63__#$!@%!#__spacer.gif
math 3.rtfd/64__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._64__#$!@%!#__spacer.gif
math 3.rtfd/65__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._65__#$!@%!#__spacer.gif
math 3.rtfd/66__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._66__#$!@%!#__spacer.gif
math 3.rtfd/67__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._67__#$!@%!#__spacer.gif
math 3.rtfd/68__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._68__#$!@%!#__spacer.gif
math 3.rtfd/69__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._69__#$!@%!#__spacer.gif
math 3.rtfd/6__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._6__#$!@%!#__spacer.gif
math 3.rtfd/70__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._70__#$!@%!#__spacer.gif
math 3.rtfd/71__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._71__#$!@%!#__spacer.gif
math 3.rtfd/72__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._72__#$!@%!#__spacer.gif
math 3.rtfd/73__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._73__#$!@%!#__spacer.gif
math 3.rtfd/74__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._74__#$!@%!#__spacer.gif
math 3.rtfd/75__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._75__#$!@%!#__spacer.gif
math 3.rtfd/76__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._76__#$!@%!#__spacer.gif
math 3.rtfd/77__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._77__#$!@%!#__spacer.gif
math 3.rtfd/78__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._78__#$!@%!#__spacer.gif
math 3.rtfd/79__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._79__#$!@%!#__spacer.gif
math 3.rtfd/7__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._7__#$!@%!#__spacer.gif
math 3.rtfd/8__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._8__#$!@%!#__spacer.gif
math 3.rtfd/9__#$!@%!#__spacer.gif
__MACOSX/math 3.rtfd/._9__#$!@%!#__spacer.gif
math 3.rtfd/f1q108g1
__MACOSX/math 3.rtfd/._f1q108g1
math 3.rtfd/f1q10g1
__MACOSX/math 3.rtfd/._f1q10g1
math 3.rtfd/f1q10g2
__MACOSX/math 3.rtfd/._f1q10g2
math 3.rtfd/f1q10g3
__MACOSX/math 3.rtfd/._f1q10g3
math 3.rtfd/f1q10g4
__MACOSX/math 3.rtfd/._f1q10g4
math 3.rtfd/f1q116g1
__MACOSX/math 3.rtfd/._f1q116g1
math 3.rtfd/f1q1g1
__MACOSX/math 3.rtfd/._f1q1g1
math 3.rtfd/f1q1g2
__MACOSX/math 3.rtfd/._f1q1g2
math 3.rtfd/f1q1g3
__MACOSX/math 3.rtfd/._f1q1g3
math 3.rtfd/f1q22g1
__MACOSX/math 3.rtfd/._f1q22g1
math 3.rtfd/f1q22g2
__MACOSX/math 3.rtfd/._f1q22g2
math 3.rtfd/f1q22g3
__MACOSX/math 3.rtfd/._f1q22g3
math 3.rtfd/f1q22g4
__MACOSX/math 3.rtfd/._f1q22g4
math 3.rtfd/f1q22g5
__MACOSX/math 3.rtfd/._f1q22g5
math 3.rtfd/f1q26g1
__MACOSX/math 3.rtfd/._f1q26g1
math 3.rtfd/f1q26g2
__MACOSX/math 3.rtfd/._f1q26g2
math 3.rtfd/f1q26g3
__MACOSX/math 3.rtfd/._f1q26g3
math 3.rtfd/f1q26g4
__MACOSX/math 3.rtfd/._f1q26g4
math 3.rtfd/f1q26g5
__MACOSX/math 3.rtfd/._f1q26g5
math 3.rtfd/f1q32g1
__MACOSX/math 3.rtfd/._f1q32g1
math 3.rtfd/f1q42g1
__MACOSX/math 3.rtfd/._f1q42g1
math 3.rtfd/f1q49g1
__MACOSX/math 3.rtfd/._f1q49g1
math 3.rtfd/f1q53g1
__MACOSX/math 3.rtfd/._f1q53g1
math 3.rtfd/f1q53g2
__MACOSX/math 3.rtfd/._f1q53g2
math 3.rtfd/f1q53g3
__MACOSX/math 3.rtfd/._f1q53g3
math 3.rtfd/f1q53g4
__MACOSX/math 3.rtfd/._f1q53g4
math 3.rtfd/f1q53g5
__MACOSX/math 3.rtfd/._f1q53g5
math 3.rtfd/f1q54g1
__MACOSX/math 3.rtfd/._f1q54g1
math 3.rtfd/f1q54g2
__MACOSX/math 3.rtfd/._f1q54g2
math 3.rtfd/f1q5g1
__MACOSX/math 3.rtfd/._f1q5g1
math 3.rtfd/f1q77g1
__MACOSX/math 3.rtfd/._f1q77g1
math 3.rtfd/f1q77g2
__MACOSX/math 3.rtfd/._f1q77g2
math 3.rtfd/spacer.gif
__MACOSX/math 3.rtfd/._spacer.gif
math 3.rtfd/TXT.rtf
Question 1
5 points
Save
Find the indicated intercept(s) of the graph of the function.
x-intercepts of f(x) = f1q42g1 ¬
spacer.gif ¬
(9, 0)(-9, 0)(0, 0) and (-9, 0)(0, 0) and (9, 0)
1__#$!@%!#__spacer.gif ¬ Question 2
5 points
Save
Find all zeros of the function and write the polynomial as a product of linear factors.
f(x) = x4 + 6×3 + 17×2 + 54x + 72
2__#$!@%!#__spacer.gif ¬
f(x) = (x – 4)(x + 2)(x – 3)(x + 3)f(x) = (x + 4)(x + 2)(x – 3i)(x + 3i)f(x) = (x – 1)(x – 8)(x – 3i)(x + 3i)f(x) = (x – if1q77g1 ¬)(x + if1q77g2 ¬)(x – 3)(x +3)
3__#$!@%!#__spacer.gif ¬ Question 3
5 points
Save
State whether the function is a polynomial function or not. If it is, give its degree. If it is not, tell why not.
4(x – 1)12(x + 1)9
4__#$!@%!#__spacer.gif ¬
Yes; degree 48Yes; degree 21Yes; degree 4Yes; degree 12
5__#$!@%!#__spacer.gif ¬ Question 4
5 points
Save
Find the x- and y-intercepts of f.
f(x) = (x + 2)(x – 3)(x + 3)
6__#$!@%!#__spacer.gif ¬
x-intercepts: -3, 3, 2; y-intercept: 18x-intercepts: -2, -3, 3; y-intercept: 18x-intercepts: -3, 3, 2; y-intercept: -18x-intercepts: -2, -3, 3; y-intercept: -18
7__#$!@%!#__spacer.gif ¬ Question 5
5 points
Save
Give the equation of the oblique asymptote, if any, of the function.
f(x) = f1q49g1 ¬
8__#$!@%!#__spacer.gif ¬
y = x – 3x = y – 3y = x – 9no oblique asymptotes
9__#$!@%!#__spacer.gif ¬ Question 6
5 points
Save
Find the indicated intercept(s) of the graph of the function.
y-intercept of f(x) = f1q1g1 ¬
10__#$!@%!#__spacer.gif ¬
(0, 3)(0, 4)f1q1g2 ¬f1q1g3 ¬
11__#$!@%!#__spacer.gif ¬ Question 7
5 points
Save
Determine where the function is increasing and where it is decreasing.
f(x) = -x2 – 4x + 5
12__#$!@%!#__spacer.gif ¬
increasing on (-∞, 9)
decreasing on (9, ∞)increasing on (-2, ∞)
decreasing on (-∞, -2)increasing on (-∞, -2)
decreasing on (-2, ∞)increasing on (9, ∞)
decreasing on (-∞, 9)
13__#$!@%!#__spacer.gif ¬ Question 8
5 points
Save
Use the graph to find the horizontal asymptote, if any, of the function.
f1q108g1 ¬
14__#$!@%!#__spacer.gif ¬
y = 0x = 2y = 3y = 0, y = 3
15__#$!@%!#__spacer.gif ¬ Question 9
5 points
Save
For the polynomial, list each real zero and its multiplicity. Determine whether the graph crosses or touches the x-axis at each x -intercept.
f(x) = f1q53g1 ¬4(x – 1)3
16__#$!@%!#__spacer.gif ¬
– f1q53g2 ¬, multiplicity 4, touches x-axis; 1, multiplicity 3, crosses x-axisf1q53g3 ¬, multiplicity 4, touches x-axis; -1, multiplicity 3, crosses x-axisf1q53g4 ¬, multiplicity 4, crosses x-axis; -1, multiplicity 3, touches x-axis- f1q53g5 ¬, multiplicity 4, crosses x-axis; 1, multiplicity 3, touches x-axis
17__#$!@%!#__spacer.gif ¬ Question 10
5 points
Save
Use the x-intercepts to find the intervals on which the graph of f is above and below the x-axis.
f(x) = (x – 2)2(x + 4)2
18__#$!@%!#__spacer.gif ¬
above the x-axis: (-4, 2)
below the x-axis: (-∞, -4), (2, ∞)above the x-axis: no intervals
below the x-axis: (-∞, -4), (-4, 2), (2, ∞)above the x-axis: (-∞, -4), (2, ∞)
below the x-axis: (-4, 2)above the x-axis: (-∞, -4), (-4, 2), (2, ∞)
below the x-axis: no intervals
19__#$!@%!#__spacer.gif ¬ Question 11
5 points
Save
Solve.
While traveling in a car, the centrifugal force a passenger experiences as the car drives in a circle varies jointly as the mass of the passenger and the square of the speed of the car. If the a passenger experiences a force of 162 newtons when the car is moving at a speed of 60 kilometers per hour and the passenger has a mass of 50 kilograms, find the force a passenger experiences when the car is moving at 40 kilometers per hour and the passenger has a mass of 100 kilograms.
20__#$!@%!#__spacer.gif ¬
128 newtons144 newtons160 newtons176 newtons
21__#$!@%!#__spacer.gif ¬ Question 12
5 points
Save
Use the graph to find the vertical asymptotes, if any, of the function.
f1q5g1 ¬
22__#$!@%!#__spacer.gif ¬
x = -3, x = 3, x = 0x = -3, x = 3, y = 0nonex = -3, x = 3
23__#$!@%!#__spacer.gif ¬ Question 13
5 points
Save
Solve the equation in the real number system.
2×4 – 2×3 + x2 – 5x – 10 = 0
24__#$!@%!#__spacer.gif ¬
{-1, 2}f1q54g1 ¬{1, -2}f1q54g2 ¬
25__#$!@%!#__spacer.gif ¬ Question 14
5 points
Save
Give the equation of the horizontal asymptote, if any, of the function.
f(x) = f1q116g1 ¬
26__#$!@%!#__spacer.gif ¬
y = 2y = 6y = 1no horizontal asymptotes
27__#$!@%!#__spacer.gif ¬ Question 15
5 points
Save
Find the vertex and axis of symmetry of the graph of the function.
f(x) = -5×2 – 2x – 2
28__#$!@%!#__spacer.gif ¬
f1q22g1 ¬; x = -5f1q22g2 ¬; x = f1q22g3 ¬(5, -2); x = 5f1q22g4 ¬; x = – f1q22g5 ¬
29__#$!@%!#__spacer.gif ¬ Question 16
5 points
Save
Solve.
The power that a resistor must dissipate is jointly proportional to the square of the current flowing through the resistor and the resistance of the resistor. If a resistor needs to dissipate f1q26g1 ¬ of power when f1q26g2 ¬ of current is flowing through the resistor whose resistance is f1q26g3 ¬ find the power that a resistor needs to dissipate when f1q26g4 ¬ of current are flowing through a resistor whose resistance is f1q26g5 ¬
30__#$!@%!#__spacer.gif ¬
63 watts147 watts84 watts21 watts
31__#$!@%!#__spacer.gif ¬ Question 17
5 points
Save
Find all zeros of the function and write the polynomial as a product of linear factors.
f(x) = x3 + 8×2 + 22x + 20
32__#$!@%!#__spacer.gif ¬
f(x) = (x + 2)(x + 3 + i)(x + 3 – i)f(x) = (x + 2)(x + 3 + i)(x – 3 – i)f(x) = (x – 1)(x + 3 + if1q10g1 ¬)(x + 3 – if1q10g2 ¬)f(x) = (x + 1)(x + 3 + if1q10g3 ¬)(x – 2 – if1q10g4 ¬)
33__#$!@%!#__spacer.gif ¬ Question 18
5 points
Save
Solve the inequality.
(x + 1)(x – 3) ≤ 0
34__#$!@%!#__spacer.gif ¬
(-∞, -1][-1, 3][3, ∞)(-∞, -1] or [3, ∞)
35__#$!@%!#__spacer.gif ¬ Question 19
5 points
Save
Solve the inequality.
f1q32g1 ³ 0
36__#$!@%!#__spacer.gif ¬
(-∞, -7) or [-2, 6) or [12, ∞)(-∞, -7) or [12, ∞)(-7, -2] or (6, 12](-∞, -7) or [-2, 0) or (0, 6) or [12, ∞)
37__#$!@%!#__spacer.gif ¬ Question 20
5 points
Save
Form a polynomial whose zeros and degree are given.
Zeros: -1, 1, – 2; degree 3
38__#$!@%!#__spacer.gif ¬
f(x) = x3 – 2×2 + x – 2 for a = 1f(x) = x3 – 2×2 – x + 2 for a = 1f(x) = x3 + 2×2 + x + 2 for a = 1f(x) = x3 + 2×2 – x – 2 for a = 1
39__#$!@%!#__spacer.gif ¬ 40__#$!@%!#__spacer.gif ¬ 41__#$!@%!#__spacer.gif ¬ 42__#$!@%!#__spacer.gif ¬ 43__#$!@%!#__spacer.gif ¬ 44__#$!@%!#__spacer.gif ¬ 45__#$!@%!#__spacer.gif ¬ 46__#$!@%!#__spacer.gif ¬ 47__#$!@%!#__spacer.gif ¬ 48__#$!@%!#__spacer.gif ¬ 49__#$!@%!#__spacer.gif ¬ 50__#$!@%!#__spacer.gif ¬ 51__#$!@%!#__spacer.gif ¬ 52__#$!@%!#__spacer.gif ¬ 53__#$!@%!#__spacer.gif ¬ 54__#$!@%!#__spacer.gif ¬ 55__#$!@%!#__spacer.gif ¬ 56__#$!@%!#__spacer.gif ¬ 57__#$!@%!#__spacer.gif ¬ 58__#$!@%!#__spacer.gif ¬ 59__#$!@%!#__spacer.gif ¬ 60__#$!@%!#__spacer.gif ¬ 61__#$!@%!#__spacer.gif ¬ 62__#$!@%!#__spacer.gif ¬ 63__#$!@%!#__spacer.gif ¬ 64__#$!@%!#__spacer.gif ¬ 65__#$!@%!#__spacer.gif ¬ 66__#$!@%!#__spacer.gif ¬ 67__#$!@%!#__spacer.gif ¬ 68__#$!@%!#__spacer.gif ¬ 69__#$!@%!#__spacer.gif ¬ 70__#$!@%!#__spacer.gif ¬ 71__#$!@%!#__spacer.gif ¬ 72__#$!@%!#__spacer.gif ¬ 73__#$!@%!#__spacer.gif ¬ 74__#$!@%!#__spacer.gif ¬ 75__#$!@%!#__spacer.gif ¬ 76__#$!@%!#__spacer.gif ¬ 77__#$!@%!#__spacer.gif ¬ 78__#$!@%!#__spacer.gif ¬ 79__#$!@%!#__spacer.gif ¬
__MACOSX/math 3.rtfd/._TXT.rtf