Theory Questions – 40 marks
In your report, clearly address the following theory questions. Each answer should be approximately 100 words only in length without relying on diagrams.
1. For an instrumentation amplifier, explain what common mode rejection ratio is and why it should normally have a high value. Be sure to explain how it’s value can cause errors in the amplification of an input signal.
2. Balanced inputs are very important for an instrumentation amplifier in order to reduce errors and noise. Explain in detail two (2) different ways in which balanced inputs can help reduce noise highlighting the method and how reduction of noise is achieved at the output of the amplifier.
3. Figure 15 within the data for the OP07 operational amplifier shows how power supply rejection ratio changes with frequency. Explain what this graph means for the instrumentation amplifier you designed. Be sure to explain what it means for different values of frequency.
4. Explain what magnetically-transmitted interference is in simple, practical terms and give an example of a situation where it is likely that magnetic interference is being created.
5. Explain what a ground loop is and explain the implementation of two (2) methods to alleviate the problem.
6. Isolation Amplifiers are one example of an instrumentation amplifier. Describe how this type of specialized works, as well as listing several types of applications where it can be found.
7. Explain the purpose of a frequency compensating capacitor in relation to instrumentation amplifier.
8. Explain how the use of open collector logic gates in the GPIB3 allows the connection of many instruments onto a two-way bus. Additionally, detail why ALL connected instruments must try to pull the bus line to a high voltage to signal that the bus is free.
Ultralow Offset Voltage
Operational Amplifier
Data Sheet OP07
Rev. G
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use.
subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 www.analog.com
Fax: 781.461.3113 ©2002-2011 Analog Devices, Inc. All rights reserved.
FEATURES
Low VOS: 75 μV maximum
Low VOS drift: 1.3 μV/°C maximum
Ultrastable vs. time: 1.5 μV per month maximum
Low noise: 0.6 μV p-p maximum
Wide input voltage range: ±14 V typical
Wide supply voltage range: ±3 V to ±18 V
125°C temperature-tested dice
APPLICATIONS
Wireless base station control circuits
Optical network control circuits
Instrumentation
Sensors and controls
Thermocouples
Resistor thermal detectors (RTDs)
Strain bridges
Shunt current measurements
Precision filters
GENERAL DESCRIPTION
The OP07 has very low input offset voltage (75 μV maximum for
OP07E) that is obtained by trimming at the wafer stage. These
low offset voltages generally eliminate any need for external
nulling. The OP07 also features low input bias current (±4 nA for
the OP07E) and high open-loop gain (200 V/mV for the OP07E).
The low offset and high open-loop gain make the OP07
particularly useful for high gain instrumentation applications.
PIN CONFIGURATION
1VOS TRIM 8 VOS TRIM
2–IN 7 V
+
3+IN 6
OUT
4V– 5 NC
OP0
7
NC = NO CONNECT 0
0
3
1
6-
00
1
Figure 1.
The wide input voltage range of ±13 V minimum combined
with a high CMRR of 106 dB (OP07E) and high input
impedance provide high accuracy in the noninverting circuit
configuration. Excellent linearity and gain accuracy can be
maintained even at high closed-loop gains. Stability of offsets
and gain with time or variations in temperature is excellent. The
accuracy and stability of the OP07, even at high gain, combined
with the freedom from external nulling have made the OP07 an
industry standard for instrumentation applications.
The OP07 is available in two standard performance grades. The
OP07E is specified for operation over the 0°C to 70°C range,
and the OP07C is specified over the −40°C to +85°C
temperature range.
The OP07 is available in epoxy 8-lead PDIP and 8-lead narrow
SOIC packages. For CERDIP and TO-99 packages and standard
microcircuit drawing (SMD) versions, see the OP77.
1 R2A AND R2B ARE ELECTRONICALLY ADJUSTED ON CHIP AT FACTORY FOR MINIMUM INPUT OFFSET VOLTAGE.
6
V+
7
8
3
C3
1
4
2
OUT
Q
5
R2A1
R5
R8
R7
V
–
R6
R3
R4
Q21
Q22
Q23
Q
24
R1A
R2B1
R1B
Q7
Q3 Q6
Q1
Q4
Q2
Q27
Q26
Q
25
C1
Q9 Q
10
Q11 Q
12
C2
(OPTIONAL
NULL
)
Q13
Q14
Q17
Q
16
Q
15
Q18
Q
20
Q1
9
R10
R9
Q8
NON
INVERTING
INPUT
INVERTING
INPUT
00
31
6-
00
2
Figure 2. Simplified Schematic
http://www.analog.com/
www.analog.com/
OP07
www.analog.com
OP07 Data Sheet
Rev. G | Page 2 of 16
TABLE OF CONTENTS
…………………………………………………………………………………. 1
…………………………………………………………………………… 1
………………………………………………………………. 1
………………………………………………………………….. 1
……………………………………………………………………. 2
Specifications …………………………………………………………………………. 3
OP07E Electrical Characteristics ……………………………………….. 3
OP07C Electrical Characteristics ……………………………………….. 4
……………………………………………………6
Thermal Resistance ……………………………………………………………..6
ESD Caution………………………………………………………………………..6
……………………………………….7
…………………………………………………………….. 11
Applications Information …………………………………………………. 12
…………………………………………………………….. 13
Ordering Guide ……………………………………………………………….. 14
REVISION HISTORY
10/11—Rev. F. to Rev G
Changes to Features Section…………………………………………………… 1
8/10—Rev. E. to Rev F
Changes to Ordering Guide …………………………………………………. 14
7/09—Rev. D. to Rev E
Changes to Figure 29 Caption ………………………………………………. 11
Changes to Ordering Guide …………………………………………………. 14
7/06—Rev. C. to Rev D
Changes to Features ……………………………………………………………….. 1
Changes to General Description ……………………………………………. 1
Changes to Specifications Section ………………………………………….. 3
Changes to Table 4 …………………………………………………………………. 6
Changes to Figure 6 and Figure 8 …………………………………………… 7
Changes to Figure 13 and Figure 14 ……………………………………….. 8
Changes to Figure 20 ……………………………………………………………… 9
Changes to Figure 21 to Figure 25 ………………………………………… 10
Changes to Figure 26 and Figure 30 ……………………………………… 11
Replaced Figure 28 ………………………………………………………………. 11
Changes to Applications Information Section ………………………. 12
Updated Outline Dimensions ………………………………………………. 13
Changes to Ordering Guide …………………………………………………. 14
8/03—Rev. B to Rev. C
Changes to OP07E Electrical Specifications ……………………………. 2
Changes to OP07C Electrical Specifications …………………………… 3
Edits to Ordering Guide …………………………………………………………. 5
Edits to Figure 6 ……………………………………………………………………… 9
Updated Outline Dimensions ………………………………………………. 11
3/03—Rev. A to Rev. B
Updated Package Titles ……………………………………………… Universal
Updated Outline Dimensions ………………………………………………. 11
2/02—Rev. 0 to Rev. A
Edits to Features ……………………………………………………………………… 1
Edits to Ordering Guide …………………………………………………………. 1
Edits to Pin Connection Drawings …………………………………………. 1
Edits to Absolute Maximum Ratings ………………………………………. 2
Deleted Electrical Characteristics ………………………………………. 2–3
Deleted OP07D Column from Electrical Characteristics ……. 4–5
Edits to TPCs …………………………………………………………………….. 7–9
Edits to High-Speed, Low VOS Composite Amplifier ………………. 9
Data Sheet OP07
Rev. G | Page 3 of 16
SPECIFICATIONS
OP07E ELECTRICAL CHARACTERISTICS
VS = ±15 V, unless otherwise noted.
Table 1.
Parameter Symbol Conditions Min Typ Max Unit
INPUT CHARACTERISTICS
TA = 25°C
Input Offset Voltage 1 VOS 30 75 μV
Long-Term VOS Stability 2 VOS/Time 0.3 1.5 μV/Month
Input Offset Current IOS 0.5 3.8 nA
Input Bias Current IB ±1.2 ±4.0 nA
Input Noise Voltage en p-p 0.1 Hz to 10 Hz 3 0.35 0.6 μV p-p
Input Noise Voltage Density en fO = 10 Hz 10.3 18.0 nV/√Hz
fO = 100 Hz3 10.0 13.0 nV/√Hz
fO = 1 kHz 9.6 11.0 nV/√Hz
Input Noise Current In p-p 14 30 pA p-p
Input Noise Current Density In fO = 10 Hz 0.32 0.80 pA/√Hz
fO = 100 Hz3 0.14 0.23 pA/√Hz
fO = 1 kHz 0.12 0.17 pA/√Hz
Input Resistance, Differential Mode 4 RIN 15 50 MΩ
Input Resistance, Common Mode RINCM 160 GΩ
Input Voltage Range IVR ±13 ±14 V
Common-Mode Rejection Ratio CMRR VCM = ±13 V 106 123 dB
Power Supply Rejection Ratio PSRR VS = ±3 V to ±18 V 5 20 μV/V
Large Signal Voltage Gain AVO RL ≥ 2 kΩ, VO = ±10 V 200 500 V/mV
RL ≥ 500 Ω, VO = ±0.5 V, VS = ±3 V4 150 400 V/mV
0°C ≤ TA ≤ 70°C
Input Offset Voltage1 VOS 45 130 μV
Voltage Drift Without External Trim4 TCVOS 0.3 1.3 μV/°C
Voltage Drift with External Trim3 TCVOSN RP = 20 kΩ 0.3 1.3 μV/°C
Input Offset Current IOS 0.9 5.3 nA
Input Offset Current Drift TCIOS 8 35 pA/°C
Input Bias Current IB ±1.5 ±5.5 nA
Input Bias Current Drift TCIB 13 35 pA/°C
Input Voltage Range IVR ±13 ±13.5 V
Common-Mode Rejection Ratio CMRR VCM = ±13 V 103 123 dB
Power Supply Rejection Ratio PSRR VS = ±3 V to ±18 V 7 32 μV/V
Large Signal Voltage Gain AVO RL ≥ 2 kΩ, VO = ±10 V 180 450 V/mV
OUTPUT CHARACTERISTICS
TA = 25°C
Output Voltage Swing VO RL ≥ 10 kΩ ±12.5 ±13.0 V
RL ≥ 2 kΩ ±12.0 ±12.8 V
RL ≥ 1 kΩ ±10.5 ±12.0 V
0°C ≤ TA ≤ 70°C
Output Voltage Swing VO RL ≥ 2 kΩ ±12 ±12.6 V
OP07 Data Sheet
Rev. G | Page 4 of 16
Parameter Symbol Conditions Min Typ Max Unit
DYNAMIC PERFORMANCE
TA = 25°C
Slew Rate SR RL ≥ 2 kΩ3 0.1 0.3 V/μs
Closed-Loop Bandwidth BW AVOL = 1 5 0.4 0.6 MHz
Open-Loop Output Resistance RO VO = 0, IO = 0 60 Ω
Power Consumption Pd VS = ±15 V, No load 75 120 mW
VS = ±3 V, No load 4 6 mW
Offset Adjustment Range RP = 20 kΩ ±4 mV
1 Input offset voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power.
2 Long-term input offset voltage stability refers to the averaged trend time of VOS vs. the time over extended periods after the first 30 days of operation. Excluding the
initial hour of operation, changes in VOS during the first 30 operating days are typically 2.5 μV. Refer to the Typical Performance Characteristics section. Parameter is
sample tested.
3 Sample tested.
4 Guaranteed by design.
5 Guaranteed but not tested.
OP07C ELECTRICAL CHARACTERISTICS
VS = ±15 V, unless otherwise noted.
Table 2.
Parameter Symbol Conditions Min Typ Max Unit
INPUT CHARACTERISTICS
TA = 25°C
Input Offset Voltage 1 VOS 60 150 μV
Long-Term VOS Stability 2 VOS/Time 0.4 2.0 μV/Month
Input Offset Current IOS 0.8 6.0 nA
Input Bias Current IB ±1.8 ±7.0 nA
Input Noise Voltage en p-p 0.1 Hz to 10 Hz3 0.38 0.65 μV p-p
Input Noise Voltage Density en fO = 10 Hz 10.5 20.0 nV/√Hz
fO = 100 Hz 3 10.2 13.5 nV/√Hz
fO = 1 kHz 9.8 11.5 nV/√Hz
Input Noise Current In p-p 15 35 pA p-p
Input Noise Current Density In fO = 10 Hz 0.35 0.90 pA/√Hz
fO = 100 Hz3 0.15 0.27 pA/√Hz
fO = 1 kHz 0.13 0.18 pA/√Hz
Input Resistance, Differential Mode 4 RIN 8 33 MΩ
Input Resistance, Common Mode RINCM 120 GΩ
Input Voltage Range IVR ±13 ±14 V
Common-Mode Rejection Ratio CMRR VCM = ±13 V 100 120 dB
Power Supply Rejection Ratio PSRR VS = ±3 V to ±18 V 7 32 μV/V
Large Signal Voltage Gain AVO RL ≥ 2 kΩ, VO = ±10 V 120 400 V/mV
RL ≥ 500 Ω, VO = ±0.5 V, VS = ±3 V4 100 400 V/mV
−40°C ≤ TA ≤ +85°C
Input Offset Voltage1 VOS 85 250 μV
Voltage Drift Without External Trim4 TCVOS 0.5 1.8 μV/°C
Voltage Drift with External Trim3 TCVOSN RP = 20 kΩ 0.4 1.6 μV/°C
Input Offset Current IOS 1.6 8.0 nA
Input Offset Current Drift TCIOS 12 50 pA/°C
Input Bias Current IB ±2.2 ±9.0 nA
Input Bias Current Drift TCIB 18 50 pA/°C
Input Voltage Range IVR ±13 ±13.5 V
Common-Mode Rejection Ratio CMRR VCM = ±13 V 97 120 dB
Power Supply Rejection Ratio PSRR VS = ±3 V to ±18 V 10 51 μV/V
Large Signal Voltage Gain AVO RL ≥ 2 kΩ, VO = ±10 V 100 400 V/mV
Data Sheet OP07
Rev. G | Page 5 of 16
Parameter Symbol Conditions Min Typ Max Unit
OUTPUT CHARACTERISTICS
TA = 25°C
Output Voltage Swing VO RL ≥ 10 kΩ ±12.0 ±13.0 V
RL ≥ 2 kΩ ±11.5 ±12.8 V
RL ≥ 1 kΩ ±12.0 V
−40°C ≤ TA ≤ +85°C
Output Voltage Swing VO RL ≥ 2 kΩ ±12 ±12.6 V
DYNAMIC PERFORMANCE
TA = 25°C
Slew Rate SR RL ≥ 2 kΩ3 0.1 0.3 V/μs
Closed-Loop Bandwidth BW AVOL = 1 5 0.4 0.6 MHz
Open-Loop Output Resistance RO VO = 0, IO = 0 60 Ω
Power Consumption Pd VS = ±15 V, No load 80 150 mW
VS = ±3 V, No load 4 8 mW
Offset Adjustment Range RP = 20 kΩ ±4 mV
1 Input offset voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power.
2 Long-term input offset voltage stability refers to the averaged trend time of VOS vs. the time over extended periods after the first 30 days of operation. Excluding the
initial hour of operation, changes in VOS during the first 30 operating days are typically 2.5 μV. Refer to the Typical Performance Characteristics section. Parameter is
sample tested.
3 Sample tested.
4 Guaranteed by design.
5 Guaranteed but not tested.
OP07 Data Sheet
Rev. G | Page 6 of 16
ABSOLUTE MAXIMUM RATINGS
Table 3.
Parameter Ratings
Supply Voltage (VS) ±22 V
Input Voltage1 ±22 V
Differential Input Voltage ±30 V
Output Short-Circuit Duration Indefinite
Storage Temperature Range
S and P Packages −65°C to +125°C
Operating Temperature Range
OP07E 0°C to 70°C
OP07C −40°C to +85°C
Junction Temperature 150°C
Lead Temperature, Soldering (60 sec) 300°C
1 For supply voltages less than ±22 V, the absolute maximum input voltage is
equal to the supply voltage.
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
THERMAL RESISTANCE
θJA is specified for the worst-case conditions, that is, a device
soldered in a circuit board for surface-mount packages.
Table 4. Thermal Resistance
Package Type θJA θJC Unit
8-Lead PDIP (P-Suffix) 103 43 °C/W
8-Lead SOIC_N (S-Suffix) 158 43 °C/W
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on
the human body and test equipment and can discharge without detection. Although this product features
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance
degradation or loss of functionality.
Data Sheet OP07
Rev. G | Page 7 of 16
TYPICAL PERFORMANCE CHARACTERISTICS
1000
0
200
400
600
800
900
100
300
500
700
–50–75 100500–25 1257525
O
P
E
N
-L
O
O
P
G
A
IN
(V
/m
V
)
TEMPERATURE (°C)
VS = ±15V
00
31
6-
00
3
Figure 3. Open-Loop Gain vs. Temperature
30
25
20
15
10
5
0
–20 0 20 40 60 80 100
A
B
S
O
LU
TE
C
H
A
N
G
E
IN
IN
P
U
T
O
FF
S
E
T
V
O
LT
A
G
E
(µ
V
)
TIME (Seconds)
VS = ±15V
TA = 25°C, TA = 70°C
THERMAL
SHOCK
RESPONSE
BAND
DEVICE IMMERSED
IN 70°C OIL BATH
00
31
6-
00
4
Figure 4. Offset Voltage Change due to Thermal Shock
OP07C
OP07E
25
20
15
10
5
0
0 1 2 3 4 5
A
B
S
O
LU
TE
C
H
A
N
G
E
IN
IN
P
U
T
O
FF
S
E
T
V
O
LT
A
G
E
(µ
V
)
TIME AFTER SUPPLY TURN-ON (Minutes)
VS = ±15V
TA = 25°C
00
31
6-
00
5
Figure 5. Warm-Up Drift
1.0
0.8
0.6
0.4
0.2
0
100 1k 10k 100k
MATCHED OR UNMATCHED SOURCE RESISTANCE (Ω)
M
A
X
IM
U
M
E
R
R
O
R
R
E
FE
R
R
E
D
T
O
IN
P
U
T
(m
V
)
OP07E
OP07C
00
31
6-
00
6
VS = ±15V
TA = 25°C
Figure 6. Maximum Error vs. Source Resistance
1.2
1.0
0.8
0.6
0.4
0.2
0
100 1k 10k 100k
MATCHED OR UNMATCHED SOURCE RESISTANCE (Ω)
M
A
X
IM
U
M
E
R
R
O
R
R
E
FE
R
R
E
D
T
O
IN
P
U
T
(m
V
) VS = ±15V
0°C ≤ TA ≤ 70°C
OP07C
OP07E
00
31
6-
00
7
Figure 7. Maximum Error vs. Source Resistance
30
–30
–20
–10
0
10
20
–30 –20 –10 3020100
DIFFERENTIAL INPUT VALUE (V)
N
O
N
IN
V
E
R
TI
N
G
IN
P
U
T
B
IA
S
C
U
R
R
E
N
T
(n
A
) AT |VDIFF| ≤ 1.0V, | IB | ≤ 7nA (OP07C)VS = ±15V
TA = 25°C
00
31
6-
00
8
Figure 8. Input Bias Current vs. Differential Input Voltage
OP07 Data Sheet
Rev. G | Page 8 of 16
4
3
2
1
0
TEMPERATURE (°C)
IN
P
U
T
B
IA
S
C
U
R
R
E
N
T
(n
A
)
–50–75 100500–25 1257525
VS = ±15V
OP07C
OP07E
00
31
6-
00
9
Figure 9. Input Bias Current vs. Temperature
2.5
2.0
1.5
1.0
0.5
0
TEMPERATURE (°C)
IN
P
U
T
O
FF
S
E
T
C
U
R
R
E
N
T
(n
A
)
–50–100 –75 500–25 1007525
VS = ±15V
OP07C
OP07E
00
31
6-
01
0
Figure 10. Input Offset Current vs. Temperature
TIME (1s/DIV)
V
O
LT
A
G
E
(2
00
nV
/D
I
V
)
REFERRED TO INPUT
5mV/CM AT OUTPUT
00
31
6-
01
1
Figure 11. Low Frequency Noise
1000
100
10
1
FREQUENCY (H
z)
IN
P
U
T
N
O
IS
E
V
O
LT
A
G
E
(n
V
/
H
z)
101 1000100
RS1 = RS2 = 200kΩ
THERMAL NOISE SOURCE
RESISTORS INCLUDED
EXCLUDED
RS = 0
VS = ±15V
TA = 25°C
00
31
6-
01
2
Figure 12. Total Input Noise Voltage vs. Frequency
10
1
0.1
BANDWIDTH (Hz)
R
M
S
N
O
IS
E
(µ
V
)
1k100 100k10k
VS = ±15V
TA = 25°C
00
31
6-
01
3
Figure 13. Input Wideband Noise vs. Bandwidth,
0.1 Hz to Frequency Indicated
130
120
110
100
90
80
70
60
FREQUENCY (Hz)
C
M
R
R
(d
B
)
101 100k1k 10k100
OP07C
00
31
6-
01
4
Figure 14. CMRR vs. Frequency
Data Sheet OP07
Rev. G | Page 9 of 16
120
110
100
90
80
70
50
60
FREQUENCY (Hz)
P
S
R
R
(d
B
)
100.1 1 10k1k100
OP07C
TA = 25°C
00
31
6-
01
5
Figure 15. PSRR vs. Frequency
1000
800
600
400
200
0
POWER SUPPLY VOLTAGE (V)
O
P
E
N
-L
O
O
P
G
A
IN
(V
/m
V
)
±100 ±5 ±20±15
TA = 25°C
00
31
6-
01
6
Figure 16. Open-Loop Gain vs. Power Supply Voltage
120
100
80
60
40
20
0
–20
–40
FREQUENCY (Hz)
O
P
E
N
-L
O
O
P
G
A
IN
(d
B
)
0.1 1
10 100 1k 10k 100k 1M 10M
VS = ±15V
TA = 25°C
00
31
6-
01
7
Figure 17. Open-Loop Frequency Response
100
80
60
40
20
0
–20
FREQUENCY (Hz)
C
LO
S
E
D
-L
O
O
P
G
A
IN
(d
B
)
10 100 1k 10k 100k 1M 10M
VS = ±15V
TA = 25°C
00
31
6-
01
8
Figure 18. Closed-Loop Frequency Response for Various Gain Configurations
28
24
20
16
12
8
4
0
FREQUENCY (Hz)
P
E
A
K
-T
O
-P
E
A
K
A
M
P
LI
TU
D
E
(V
)
1k 10k 100k 1M
VS = ±15V
TA = 25°C
00
31
6-
01
9
Figure 19. Maximum Output Swing vs. Frequency
20
15
10
5
0
LOAD RESISTANCE TO GROUND (Ω)
M
A
X
IM
U
M
O
U
TP
U
T
(V
)
100 1k 10k
VS = ±15V
VIN = ±10mV
TA = 25°C
POSITIVE SWING
NEGATIVE SWING
00
31
6-
02
0
Figure 20. Maximum Output Voltage vs. Load Resistance
OP07 Data Sheet
Rev. G | Page 10 of 16
1000
100
10
1
TOTAL SUPPLY VOLTAGE, V+ TO V– (V)
P
O
W
E
R
C
O
N
S
U
M
P
TI
O
N
(m
W
)
0 10 20 30 40 50 60
TA = 25°C
00
31
6-
02
1
Figure 21. Power Consumption vs. Power Supply
35
30
25
20
15
TIME FROM OUTPUT BEING SHORTED (Minutes)
O
U
TP
U
T
S
H
O
R
T-
C
IR
C
U
IT
C
U
R
R
E
N
T
(m
A
)
0 4321
VS = ±15V
TA = 25°C
VIN (PIN 3) = +10mV, VO =
–15V
VIN (PIN 3) = –10mV, VO =
+15V
00
31
6-
02
2
Figure 22. Output Short-Circuit Current vs. Time
85.00
42.50
63.75
21.25
0
TEMPERATURE (°C)
A
B
S
O
LU
TE
V
A
LU
E
O
F
O
FF
S
E
T
V
O
LT
A
G
E
(µ
V
)
–75 1251007550250–25–50
VS = ±15V
RS = 100Ω
OP07C
OP07E
00
31
6-
02
3
Figure 23. Untrimmed Offset Voltage vs. Temperature
30.0
15.0
22.5
7.5
0
TEMPERATURE (°C)
A
B
S
O
LU
TE
V
A
LU
E
O
F
O
FF
S
E
T
V
O
LT
A
G
E
(µ
V
)
–100 –75 1007550250–25–50
OP07C
OP07E
OP07E
OP07C
VOS TRIMMED TO < 5µV AT 25°C NULLING POT = 20kΩ
00
31
6-
02
4
Figure 24. Trimmed Offset Voltage vs. Temperature
16
–16
–12
–8
–4
0
4
8
12
TIME (Months)
TO
TA
L
D
R
IF
T
W
IT
H
T
IM
E
(µ
V
)
0 121110987654321
0.3µV/MONTH
TREND LINE
0.3µV/MONTH
TREND LINE
0.3µV/MONTH
TREND LINE
0.2µV/MONTH
TREND LINE
0.2µV/MONTH
TREND LINE
0.2µV/MONTH
TREND LINE
00
31
6-
02
5
Figure 25. Offset Voltage Drift vs. Time
Data Sheet OP07
Rev. G | Page 11 of 16
TYPICAL APPLICATIONS
AD7115 OR
AD8510
+
–
6
EO
EIN
V+
V–
7
4
2
36OP07C
A1
+
–
V–
V+
7
4
2
3
R3
3kΩ
R5
10kΩ
R2
100kΩ
RF
SUM MODE
BIAS
R1
EO = –EIN –IB RFRFR1 00
31
6-
02
6
Figure 26. Typical Offset Voltage Test Circuit
6
OP07C
+
–
–15V
+15V
7
4
2
3
EO
R5
2.5kΩ
E3
R3
10kΩ
E2
R2
10kΩ
E1
R1
10kΩ
R4
10kΩ
00
31
6-
02
7
Figure 27. Typical Low Frequency Noise Circuit
6
OP07
+
–
V–
1
8
7
4
2
INPUT
3
–
+
OUT
V+
20kΩ
00
31
6-
02
8
Figure 28. Optional Offset Nulling Circuit
OP07
+
–
6
EO
V+
V–
7
4
2
3
R5
10kΩ
R4
10kΩ
R3
10kΩ
EIN
±10V
=R1R3
R2
R4
R2
10kΩ
6
OP07
+
–
V–
V+
7
4
2
3
FD333
D1
FD333
D2
R1
10kΩ
0V TO +10V
00
31
6-
02
9
Figure 29. Absolute Value Circuit
OP07C
A2
+
–
6
EO
EIN
V+
V–
7
4
2
36OP07C
A1
+
–
V–
V+
7
4
2
3
R3
3kΩ
R1
10kΩ
R2
100kΩ
RF
SUM MODE
BIAS
R1
EO = –EIN + IB RFRFR1
NOTES
1. PINOUT SHOWN FOR P PACKAGE 00
31
6-
03
0
Figure 30. High Speed, Low VOS Composite Amplifier
6
OP07
+
–
–15V
+15V
7
4
2
3
EO
R5
2.5kΩ
E3
R3
10kΩ
E2
R2
10kΩ
E1
R1
10kΩ
R4
10kΩ
NOTES
1. PINOUT SHOWN FOR P PACKAGE 00
31
6-
03
1
Figure 31. Adjustment-Free Precision Summing Amplifier
OP07 Data Sheet
Rev. G | Page 12 of 16
NOTES
1. PINOUT SHOWN FOR P PACKAGE
6
OP07
+
–
V–
V+
7
4
2
3
EO
R4
REFERENCE
JUNCTION
SENDING
JUNCTION
R3R1
R2
=R1R3
R2
R4
00
31
6-
03
2
Figure 32. High Stability Thermocouple Amplifier
OP07
A2
+
–
6
EO
V+
V–
7
4
2
3
R5
10kΩ
R4
10kΩ
R3
10kΩ
EIN
±10V
R2
10kΩ
6OP07
A1
+
–
V–
V+
7
4
2
3
FD333
D1
FD333
D2
R1
10kΩ
0V TO +10V
NOTES
1. PINOUT SHOWN FOR P PACKAGE
VA
00
31
6-
03
3
Figure 33. Precision Absolute-Value Circuit
APPLICATIONS INFORMATION
The OP07 provides stable operation with load capacitance of up
to 500 pF and ±10 V swings; larger capacitances should be
decoupled with a 50 Ω decoupling resistor.
Stray thermoelectric voltages generated by dissimilar metals at
the contacts to the input terminals can degrade drift
performance. Therefore, best operation is obtained when both
input contacts are maintained at the same temperature,
preferably close to the package temperature.
Data Sheet OP07
Rev. G | Page 13 of 16
OUTLINE DIMENSIONS
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
COMPLIANT TO JEDEC STANDARDS MS-012-AA
01
24
07
-A
0.25 (0.0098)
0.17 (0.0067)
1.27 (0.0500)
0.40 (0.0157)
0.50 (0.0196)
0.25 (0.0099)
45°
8°
0°
1.75 (0.0688)
1.35 (0.0532)
SEATING
PLANE
0.25 (0.0098)
0.10 (0.0040)
4
1
8 5
5.00 (0.1968)
4.80 (0.1890)
4.00 (0.1574)
3.80 (0.1497)
1.27 (0.0500)
BSC
6.20 (0.2441)
5.80 (0.2284)
0.51 (0.0201)
0.31 (0.0122)
COPLANARITY
0.10
Figure 34. 8-Lead Standard Small Outline Package [SOIC_N]
Narrow Body S-Suffix
(R-8)
Dimensions shown in millimeters and (inches)
COMPLIANT TO JEDEC STANDARDS MS-001
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS. 07
06
06
-A
0.022 (0.56)
0.018 (0.46)
0.014 (0.36)
SEATING
PLANE
0.015
(0.38)
MIN
0.210 (5.33)
MAX
0.150 (3.81)
0.130 (3.30)
0.115 (2.92)
0.070 (1.78)
0.060 (1.52)
0.045 (1.14)
8
1 4
5 0.280 (7.11)
0.250 (6.35)
0.240 (6.10)
0.100 (2.54)
BSC
0.400 (10.16)
0.365 (9.27)
0.355 (9.02)
0.060 (1.52)
MAX
0.430 (10.92)
MAX
0.014 (0.36)
0.010 (0.25)
0.008 (0.20)
0.325 (8.26)
0.310 (7.87)
0.300 (7.62)
0.195 (4.95)
0.130 (3.30)
0.115 (2.92)
0.015 (0.38)
GAUGE
PLANE
0.005 (0.13)
MIN
Figure 35. 8-Lead Plastic Dual-in-Line Package [PDIP]
P-Suffix
(N-8)
Dimensions shown in inches and (millimeters)
OP07 Data Sheet
Rev. G | Page 14 of 16
ORDERING GUIDE
Model 1 Temperature Range Package Description Package Option
OP07EPZ 0°C to 70°C 8-Lead PDIP N-8 (P-Suffix)
OP07CPZ −40°C to +85°C 8-Lead PDIP N-8 (P-Suffix)
OP07CSZ −40°C to +85°C 8-Lead SOIC_N R-8 (S-Suffix)
OP07CSZ-REEL −40°C to +85°C 8-Lead SOIC_N R-8 (S-Suffix)
OP07CSZ-REEL7 −40°C to +85°C 8-Lead SOIC_N R-8 (S-Suffix)
1 Z = RoHS Compliant Part.
Data Sheet OP07
Rev. G | Page 15 of 16
NOTES
OP07 Data Sheet
Rev. G | Page 16 of 16
©2002-2011 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D00316-0-10/11(G)
NOTES
www.analog.com
www.analog.com
- Features
Applications
General Description
Pin Configuration
Revision History
Specifications
OP07E Electrical Characteristics
OP07C Electrical Characteristics
Absolute Maximum Ratings
Thermal Resistance
ESD Caution
Typical Performance Characteristics
Typical Applications
Applications Information
Outline Dimensions
Ordering Guide