Complete Session 8 Case Study Case 14.4 from the textbook (Continental Trucking).
Submit a Word document formatted in APA style complete with cover and reference pages. The reference page must have at least one entry: the textbook.
The submission must be a form Research Report with the following parts:
- Background information about the case: The section must provide information about the people, places, operations, business, etc. and the research question or practical business challenges for which the current research will be used to provide a solution . This section need not be long; up to two well written paragraphs are usually sufficient.
- Descriptive Statistics and Data illustration: In this section, the submission must summarize how the data was obtained (see chapter 1 of the text). Graphs and charts illustrating the main features of the data are also required – please see chapter 2 of the textbook. Finally, a table of descriptive statistics accompanied by description and explanations of the main features of the data are also required.
- Statistical Method: This part of the submission must explain the main statistical method(s) used in the case. What is the theory behind it? What are the working hypotheses (null and alternative, etc.), what main measures, statistics, or parameters etc., are to be estimated or calculated using the method; how does it measures or calculates these measures, statistics, or parameters? Finally, this section must describe how the results of the statistical method are interpreted. That is, what is it about the results that would indicate that the working hypotheses or research questions are confirmed or rejected or perhaps need to be modified and tested again?
- Results: The actual results of the statistical method applied to the data are now presented in this section. The section requires the student to describe the results and their theoretical interpretation based on the description of the method described in the previous section.
- Conclusion and Recommendation: This section restates the statistical results and applies it to the business situation in the case. It also makes practical recommendations about what steps the business in the case can take going forward based on the results of the statistical analysis. The application and recommendation can take one or more of these general forms.
The statistical results of the data analysis provided an answer(s) to the issues that the business is facing. As a result specific policies or practical steps can be implemented in the business.
The statistical results of the data analysis provided only partial answers. More research and tests need to be done to come up with a more useful answers for the business situation.
The statistical results did not provide any useful information for the challenges that a business(s) is facing. Recommendations for conducting new research with new approaches, data, variables, etc. may be required.
Note: there is always room for ‘further research’ since it is impossible for a single research case to answer every possible question.
- The textbook provides narratives, questions, or actual steps/questions for each case study. While these are useful for conducting actual research, the submission must take the form of a research report and follow the above pattern.
- Consistent with the emphasis of this course on interpretation, an edited version of the answer key for the case study has been provided here. Students are required to use the information to enhance their understanding of the statistical methods and the results obtained.
Case
1
4.4: Continental Trucking
Norm wants to develop a method for determining when preventive maintenance is needed. He believes that fuel consumption may be a good indicator of when trucks should be repaired. He also believes that fuel consumption is influenced by the weight of the truck and head winds. Norm has collected data on the miles per gallon for trucking with various haul weights traveling from East-West and from West-East. Norm should use this information to determine whether haul weight can be used to predict miles per gallon. If this can be done, the model can be used as a control to determine when a truck needs to be tuned up. Because head winds influence miles per gallon, two models are developed–one for the East-West haul and one for the West-East haul.
The output using Excel regression analysis tool in the Data Analysis Toolpak should produce a result with values in the table below.
East-West Haul
Regression Statistics |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Multiple R |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
R Square |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Adjusted R Square |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standard Error |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Observations |
9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ANOVA |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
df |
SS |
MS |
F |
Significance F |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Regression | 1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Residual |
7 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Total |
8 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Coefficients |
Standard Error |
t Stat |
P-value |
Lower 95% |
Upper 95% |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intercept |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Haul Weight |
West-East Haul |
Regression Statistics |
10 |
Evaluate each model for statistical significance (see the Significance F which are the p-values for the test of the overall model’s significance). Also assess the value of the R-square values. What does a test of the slope coefficient for either model reveal? Comment on the sample size, and what other possible steps can be taken to improve the model (for example transforming the data might help). Are there possible other variables that can be used? Write your report accordingly.