math help

2

>

Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper

data provided – setup N

PV

.

2

5

,000,000

,000,000

5   

5

2

$ 1.75

0.01

0.01

0.01

$ 1.90

0.01

$ 1.90

0.01

0

7.895 0.01

0.01

0.01

$ 2.45

0.01

0.01

5

0.01

.465

0.01

0.01

10%

0

0%

0

0

2.00

2.50

0

Price Ratio

Year      # of players per thousands       retail price per ball       Ball sold in millions

PV

0

$ (5,000,000.00)

0 1999

$ 0.65

$ 1,570,283

1

$ 0.65

$ 1,570,283

2

$ 0.65

$ 1,570,283

3

$ 0.65

$ 1,570,283

4

$ 0.65

$ 1,570,283

5

$ 0.65

$ 1,570,283

6

$ 0.65

$ 1,570,283

7

$ 0.65

$ 1,570,283

8

$ 0.65

$ 1,570,283

9

$ 0.65

$ 1,570,283

10

$ 0.65

$ 1,570,283

——>

New Ball $

0 5
Wodraw Ball $ 0.

Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper
9
Rate 1 0%
Low fixed Cost 4
High fixed Cost 6
Year      # of players per thousands       retail price per ball       Ball sold in millions Balls/Player(000)
19

8 600 $ 1.

7 5.9

3 0.01
1986    635 6.229
1987    655 $ 1.80 6.506
1988    700 $ 1.90 6.820
1989    730 7.161
1990    762 7.895
1991    812 $

2.0
1992    831 $ 2.20 8.224
1993    877 $ 2.45 8.584
1994    931 9.026
1995    967 $ 2.60 9.491
1996    1,020 $

2.5 9.996
1997    1,077 $

2.50 10
1998    1,139 $ 2.50 10.981
Player Growth Rate for 10 yrs
Price Ratio % who would buy new ball
0.5
1.0 1

1%
1.5 41%
76%
9

5%
3.0 100%
Net Present Value if selling the ball at $ 0.65
$ 3.85
Incremental Years Profit
1999 $ (5,000,000.00)
1,253 12.079 $ 1,570,283
2000 1,378 13.287 $ 1,727,311
2001 1,516 14.616 $ 1,900,042
2002 1,668 16.077 $ 2,090,047
2003 1,834 17.685 $ 2,299,051
2004 2,018 19.454 $ 2,528,956
2005 2,220 21.399 $ 2,781,852
2006 2,442 23.539 $ 3,060,037
2007 2,686 25.893 $ 3,366,041
2008 2,954 28.482 $ 3,702,645
2009 3,250 31.330 $ 4,072,910
NPV $ 12,273,113
I have done it for 10 years – you can stretch it further if need be

Mean of initial investment
Assuming ball/player ratio will remain constant in the future
since price ratio is greater than 3 adoption rate will be 100%
10% per year growth in players
Based on int rate of 10%

data provided – setup NPV

Chart for Q7
% who would buy new ball

part a – b

Incremental Years Year      # of players per thousands       retail price per ball       Ball sold in millions Profit PV
0 1999 $ (5,000,000.00) $ (5,000,000.00)

0 1999 1,253 $ 2.50

1 2000 1,378 $ 2.50

2 2001 1,516 $ 2.50

3 2002 1,668 $ 2.50

.04

$ 3,501,632

4 2003 1,834 $ 2.50

.25

$ 3,851,795

5 2004 2,018 $ 2.50

6 2005 2,220 $ 2.50

.25

$ 4,660,672

7 2006 2,442 $ 2.50

.47

$ 5,126,739

8 2007 2,686 $ 2.50

.42

$ 5,639,413

9 2008 2,954 $ 2.50

10 2009 3,250 $ 2.50

.24

$ 6,823,690

NPV ——>

I have done it for 10 years – you can stretch it further if need be

Price Ratio 0.5 1.0 1.5 2.0 2.5 3.0

$ 2.50

% who would buy new ball 0% 11% 41% 76% 95% 100%
Incremental Years Year      # of players per thousands 

   Ball sold in millions    Ball sold in millions    Ball sold in millions    Ball sold in millions    Ball sold in millions    Ball sold in millions

0 1999 1,253 12.079

1.329

12.079

1 2000 1,378 13.287 – 0 1.462

13.287

2 2001 1,516 14.616 – 0 1.608

14.616

3 2002 1,668 16.077 – 0 1.769

16.077

4 2003 1,834 17.685 – 0 1.945

17.685

5 2004 2,018 19.454 – 0 2.140

19.454

6 2005 2,220 21.399 – 0 2.354

21.399

7 2006 2,442 23.539 – 0 2.589

23.539

8 2007 2,686 25.893 – 0 2.848

25.893

9 2008 2,954 28.482 – 0 3.133

28.482

10 2009 3,250 31.330 – 0 3.446

31.330

Selling Price $ 5.00 $ 2.50 $ 1.67 $ 1.25 $ 1.00 $ 0.83

Year   

1999

2000 $ – 0

2001 $ – 0

2002 $ – 0

2003 $ – 0 $ 3.85

2004 $ – 0

2005 $ – 0

$ 6.70

2006 $ – 0

2007 $ – 0

$ 8.11

2008 $ – 0

$ 8.92

2009 $ – 0

A) Base Case
Base Case in this situation would be the worst adoption rate; ie, what would happen if we go ahead and produce the balls and there is minimal adoption
1.329 $ 2,630,827.98 $ 2,630,828
1.462 $ 2,893,910.78 $ 2,893,911
1.608 $ 3,183,301.86 $ 3,183,302
1.769 $ 3,501,632
1.945 $ 3,851,795
2.140 $ 4,236,974.77 $ 4,236,975
2.354 $ 4,660,672
2.589 $ 5,126,739
2.848 $ 5,639,413
3.133 $ 6,203,354.76 $ 6,203,355
3.446 $ 6,823,690
$ 43,752,313
B) Sensitivity Analysis
Selling Price $ 5.00 $ 1.67 $ 1.25 $ 1.00 $ 0.83
Potential Balls that can be sold (millions)
– 0 4.952 9.180 11.475
5.448 10.098 12.623
5.992 11.108 13.885
6.592 12.219 15.273
7.251 13.441 16.801
7.976 14.785 18.481
8.774 16.263 20.329
9.651 17.889 22.362
10.616 19.678 24.598
1

1.678 21.646 27.058
12.845 23.811 29.764
Contribution Margin Analysis Contribution Margin (MILLIONS)
$ – 0 $ 2.63 $ 5.68 $ 6.70 $ 5.51 $ 3.78
$ 2.89 $ 6.25 $ 7.37 $ 6.06 $ 4.16
$ 3.18 $ 6.87 $ 8.11 $ 6.66 $ 4.58
$ 3.50 $ 7.56 $ 8.92 $ 7.33 $ 5.04
$ 8.31 $ 9.81 $ 8.06 $ 5.54
$ 4.24 $ 9.15 $ 10.79 $ 8.87 $ 6.10
$ 4.66 $ 10.06 $ 11.87 $ 9.76
$ 5.13 $ 11.07 $ 13.06 $ 10.73 $ 7.38
$ 5.64 $ 12.17 $ 14.37 $ 11.81
$ 6.20 $ 13.39 $ 15.80 $ 12.99
$ 6.82 $ 14.73 $ 17.38 $ 14.29 $ 9.82

10% per year growth in players
Assuming ball/player ratio will remain constant in the future
Mean of initial investment
Based on int rate of 10%
since price ratio 1, adoption rate will be 11%
since worst adoption is at price ratio of 1, so it means we will also sell same price as competition

part a – b

$5.00
$2.50
$1.67
$1.25
$1.00
$0.83

Goal Seek

Price Ratio 0.5 1.0 1.5 2.0 2.5 3.0
Selling Price $ 5.00 $ 2.50 $ 1.67 $ 1.25 $ 1.00 $ 0.83

% who would buy new ball 1%

5%

Incremental Years Year      # of players per thousands  Potential Balls that can be sold (millions)    Ball sold in millions    Ball sold in millions    Ball sold in millions    Ball sold in millions    Ball sold in millions    Ball sold in millions

0 1999 1,253 12.079

1 2000 1,378 13.287

2 2001 1,516 14.616

3 2002 1,668 16.077

4 2003 1,834 17.685

5 2004 2,018 19.454

6 2005 2,220 21.399

1.678

7 2006 2,442 23.539

8 2007 2,686 25.893

9 2008 2,954 28.482

10 2009 3,250 31.330

Selling Price $ 5.00 $ 2.50 $ 1.67 $ 1.25 $ 1.00 $ 0.83
Contribution Margin Analysis Year    Contribution Margin (MILLIONS)

1999

$ 0.45 $ 0.45

$ 0.45 $ 0.45

2000

$ 0.50 $ 0.50

$ 0.50 $ 0.50

2001

$ 0.55 $ 0.55

$ 0.55 $ 0.55

2002

$ 0.61

$ 0.61 $ 0.60

2003

$ 0.67 $ 0.67 $ 0.65 $ 0.67 $ 0.67

2004

$ 0.73 $ 0.73

$ 0.73 $ 0.73

2005

$ 0.81 $ 0.81

$ 0.81 $ 0.81

2006

$ 0.89 $ 0.89

$ 0.89 $ 0.89

2007

$ 0.97 $ 0.97

$ 0.97 $ 0.97

2008

$ 1.07 $ 1.07

$ 1.07 $ 1.07

2009

$ 1.18 $ 1.18

$ 1.18 $ 1.18

Selling Price $ 5.00 $ 2.50 $ 1.67 $ 1.25 $ 1.00 $ 0.83

Year   

0 1999

$ (5) $ (5) $ (5) $ (5) $ (5)

0 1999 $ 0.45 $ 0.45 $ 0.45 $ 0.44 $ 0.45 $ 0.45
1 2000 $ 0.45 $ 0.45 $ 0.45 $ 0.44 $ 0.45 $ 0.45
2 2001 $ 0.45 $ 0.45 $ 0.45 $ 0.44 $ 0.45 $ 0.45
3 2002 $ 0.45 $ 0.45 $ 0.45 $ 0.44 $ 0.45 $ 0.45
4 2003 $ 0.45 $ 0.45 $ 0.45 $ 0.44 $ 0.45 $ 0.45
5 2004 $ 0.45 $ 0.45 $ 0.45 $ 0.44 $ 0.45 $ 0.45
6 2005 $ 0.45 $ 0.45 $ 0.45 $ 0.44 $ 0.45 $ 0.45
7 2006 $ 0.45 $ 0.45 $ 0.45 $ 0.44 $ 0.45 $ 0.45
8 2007 $ 0.45 $ 0.45 $ 0.45 $ 0.44 $ 0.45 $ 0.45
9 2008 $ 0.45 $ 0.45 $ 0.45 $ 0.44 $ 0.45 $ 0.45
10 2009 $ 0.45 $ 0.45 $ 0.45 $ 0.44 $ 0.45 $ 0.45
NPV

$ (0) $ (0) $ (0) $ (0) $ (0)

B)Goal Seek
2% 3% 8% 12% <-- these are calculated using goal seek
0.101 0.230 0.396 0.604 0.947 1.451
0.112 0.253 0.436 0.664 1.042 1.596
0.123 0.278 0.480 0.731 1.146 1.755
0.135 0.306 0.528 0.804 1.260 1.931
0.149 0.336 0.580 0.884 1.386 2.124
0.163 0.370 0.638 0.973 1.525 2.336
0.180 0.407 0.702 1.070 2.570
0.198 0.447 0.772 1.177 1.845 2.827
0.217 0.492 0.850 1.295 2.030 3.110
0.239 0.541 0.935 1.424 2.233 3.421
0.263 0.595 1.028 1.567 2.456 3.763
$ 0.45 $ 0.44
$ 0.50 $ 0.48
$ 0.55 $ 0.53
$ 0.61 $ 0.60 $ 0.59
$ 0.67
$ 0.73 $ 0.71
$ 0.81 $ 0.78
$ 0.89 $ 0.86
$ 0.97 $ 0.95
$ 1.07 $ 1.04
$ 1.18 $ 1.14
Financial Analysis
(All Values in Millions) PV Analysis
$ (5)
$ (0)

Chart below shows Contribution Margin (in millions) for different pricing strategis across the years – it can be seen that based on price sensitivity of adoption of the balls, it is most desirables to price it at $1.67 a ball
Note – Fixed initial investment is not considered in the pricing analysis as it will be a mute point and change among different pricing options
Contribution Margin in this case is total revenue less total variable cost; it doesnt include fixed cost
Using Goal seek, we are trying to determine what the minimum response rate should be for each of the pricing strategies to break even for the next 10 years
it shows that we will definitely break even
Potential application of optimization in this case would be determine what is the best price to sell the balls at given that adoption rate is dependent on the pricing strategy; higher the price lower the adoption rate
Objective – Max Profit
Constraints – price ratio can range from 0.5 to 3, price cannot be -ve, adoption cannot be -ve, adoption can range from 0% to 100% which will be a function of price
Note – the sensitivity analysis on ‘solutions tab’ is an optimization through simulation of this case where we determine that best pricing is at $1.67 per ball
—————————————————————————————————————————————————————————————————————————————————————
Potential application of simulation in this case would be determine what the total profit would be for all the different pricing strategies given that adoption rate is dependent on the pricing strategy; higher the price lower the adoption rate
Another situation where simulation can be used is to determine break even points (ie, what should be the adoption rate for each pricing be so that we can break even – like we did using goal seek above)

Sheet3

Still stressed from student homework?
Get quality assistance from academic writers!

Order your essay today and save 25% with the discount code LAVENDER