The assignment has been completed except for questions 5,10,11,12. I need these completed immediately. I need them done right and with quality. I am paying good money, do them RIGHT AND ON TIME or else I will demand a refund and leave you one Horrific review!! If you do a good job I will leave you the best review you have ever had! 🙂
Q1 |
Perform the two basic operations of multiplication and division to a complex number in both rectangular and polar form, to demonstrate the different techniques. |
· Dividing complex numbers in rectangular and polar forms. · Converting complex numbers between polar and rectangular forms and vice versa. |
||||
Q2 |
Calculate the mean, standard deviation and variance for a set of ungrouped data |
· Completing a tabular approach to processing ungrouped data. |
||||
Q3 |
Calculate the mean, standard deviation and variance for a set of grouped data |
· Completing a tabular approach to processing grouped data having selected an appropriate group size. |
||||
Q4 |
Sketch the graph of a sinusoidal trig function and use it to explain and describe amplitude, period and frequency. |
· Calculate various features and coordinates of a waveform and sketch a plot accordingly. · Explain basic elements of a waveform. |
||||
Q5 |
Use two of the compound angle formulae and verify their results. |
· Simplify trigonometric terms and calculate complete values using compound formulae. |
||||
Q6 |
Find the differential coefficient for three different functions to demonstrate the use of function of a function and the product and quotient rules |
· Use the chain, product and quotient rule to solve given differentiation tasks. |
||||
Q7 |
Use integral calculus to solve two simple engineering problems involving the definite and indefinite integral. |
· Complete 3 tasks; one to practise integration with no definite integrals, the second to use definite integrals, the third to plot a graph and identify the area that relates to the definite integrals with a calculated answer for the area within such. |
||||
Q8 |
Use the laws of logarithms to reduce an engineering law of the type y = axn to a straight line form, then using logarithmic graph paper, plot the graph and obtain the values for the constants a and n. |
· See Task. |
||||
Q9 |
Use complex numbers to solve a parallel arrangement of impedances giving the answer in both Cartesian and polar form |
|||||
Q10 |
Use differential calculus to find the maximum/minimum for an engineering problem. |
|||||
Q11 |
Using a graphical technique determine the single wave resulting from a combination of two waves of the same frequency and then verify the result using trig formulae. |
|||||
Q12 |
Use numerical integration and integral calculus to analyse the results of a complex engineering problem |
Level of Detail in Solutions: Need to show work leading to final answer
Need
Question 1
(a) Find:
(4 + i2)
(1 + i3)
Use the rules for multiplication and division of complex numbers in rectangular form.
(b) Convert the answer in rectangular form to polar form
(c) Repeat Q1a by first converting the complex numbers to polar form and then using the rules for multiplication and division of complex numbers in polar form.
(d) Convert the answer in polar form to rectangular form.
Question 2
The following data within the working area consists of measurements of resistor values from a production line.
For the sample as a set of ungrouped data, calculate (using at least 2 decimal places):
1. arithmetic mean
1. standard deviation
1. variance
The following data consists of measurements of resistor values from a production line:
51.4
54.1
53.7
55.4
53.1
53.5
54.0
56.0
53.0
55.3
55.0
52.8
55.9
52.8
50.5
54.2
56.2
55.6
52.7
56.1
52.1
54.2
50.2
54.7
56.2
55.6
52.7
52.1
56.1
54.2
50.2
54.7
55.1
54.8
56.5
55.8
55.3
54.5
57.0
56.0
53.9
57.3
55.3
54.4
49.6
54.1
51.6
53.2
54.6
56.4
53.9
50.9
54.0
51.8
56.1
53.2
54.6
56.4
53.9
50.9
54.0
51.8
56.1
‘n’
No.
Value (X)
Mean
(X – Mean)
(X-Mean)2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
= Total X
Mean = Total X / ‘n’(max) =
‘n’ max – 1 (Y) =
Total (X-Mean)2 ……. let’s call this (Z)
Variance
Variance = (Total(X-Mean)2) / (‘n’ max -1)
= Z / Y =
Standard Deviation
Standard Deviation = square-root of Variance
=
Question 3
Using the data in Q2, we now need to arrange the data into groups so that we can “tally” the data accordingly.
No.
Data Range
Gap
Freq. (F)
Mid-Point (X)
(F x X)
Gap x F
(Bar Area)
(X – Mean)
(X-Mean)2
(X-Mean)2 x F
1
2
3
4
5
6
7
8
9
10
11
Total F…Let’s call this (Y)
Total (F x X)
Mean = (Total (F x X)) / (Y)
Total (X-Mean)2 x F ……. let’s call this (Z)
Variance
Variance = (Total(X-Mean)2 x f) / (Total F)
= Z / Y
Standard Deviation
Standard Deviation = square-root of Variance
=
Question 4
1. For a sinusoidal trigonometric function, explain what is meant by:
· amplitude
· periodic time
· frequency
Use diagrams or paragraphs if you like.
(b) An alternating current voltage is given by:
V = 310 Sin (285t + 0.65)
1. sketch the waveform, marking on all main values
1. state whether the waveform is leading or lagging
1. state the phase angle in degrees
1. state the amplitude
1. calculate the periodic time
1. calculate the frequency
Note – for an accurate plot of the waveform you will need to carry out the following steps:
Using the values in the equation work out the Periodic Time. Divide this into 4 quarters:
0 x t
0.25 x t
0.5 x t
0.75 x t
1 x t
Use these values to work out the amplitude for each value of t. Then sketch the plot.
Question 5
Using compound angle formulae, simplify:
(a) Sin (θ – 90o)
(b) Cos (θ + 270o)
In each case, verify your answer by substituting θ = 30o
Question 6
Differentiate:
1. y = (3×2 – 2x)7
1. y = 6×3 .sin4x
1. y = 5 e6x
x – 8
Question 7
(a) Integrate the following:
(i) (4Cos 3θ+ Sin 6θ) dθ
(ii) (2 + Cos 0.83θ) dθ
(b) Evaluate:
(i)
(ii)
(c)
(i) Plot the curve y = 3×2 + 6 between x = 1 and 4
(ii) Find the area under the curve between x = 1 and 4 using integral calculus
Question 8
Create a document titled Laws of Logarithms
Use the laws of logarithms to reduce an engineering law of the type y = axn to a straight line form, then using logarithmic graph paper, plot the graph and obtain the values for the constants a and n.
The following set of results was obtained during an experiment:
X: 2 2.5 3 3.5 4
Y: 8 6.4 5.3 4.6 4
The relationship between the two quantities is of the form y = axb
Complete the law:
(i) using the laws of logarithms to reduce the law to a straight line form and determine the gradient and intercept.
(ii) graphically, using logarithmic graph paper
Question 9
Use complex numbers to solve a parallel arrangement of impedances giving the answer in both Cartesian and polar form
Two impedances Z1 and Z2 are given by the complex numbers:
Z1 = 2 + j10
Z2 = j14
Find the equivalent impedance Z if:
(i) Z = Z1 + Z2 when Z1 and Z2 are in series
(ii) 1 = 1 + 1 when Z1 and Z2 are in parallel
Z Z1 Z2
Question 10
Use complex numbers to solve a parallel arrangement of impedances giving the answer in both Cartesian and polar form Use differential calculus to find the maximum/minimum for an engineering problem.
A sheet of metal is 340 mm x 225 mm and has four equal squares cut out at the corners so that the sides and edges can be turned up to form an open topped box shape.
Calculate:
(i) The lengths of the sides of the cut out squares for the volume of the box to be as big as possible.
(ii) The maximum volume of the box. Z Z1 Z2
Question 11
Using a graphical technique determine the single wave resulting from a combination of two waves of the same frequency and then verify the result using trig formulae.
A sheet of metal is 340 mm x 225 mm and has four equal squares cut out at the corners so that the sides and edges can be turned up to form an open topped box shape.
Calculate:
1. Using a vector or phasor diagram add the following waveforms together and present your answer in the form Vr = V sin(ωt+α).
Show all working including phasor diagrams.
Add the following together:
V1=10sin(ωt)
V2=20sin(ωt+)
1. Verify your result by using trigonometric formulae.
Question 12
In calculating the capacity of absorption towers in Chemical Engineering it is necessary to evaluate certain definite integrals by approximate methods. Evaluate the following definite integrals by use of Simpson’s rule and the trapezoid rule using the given data (xi is an empirical function of x, yi is an empirical function of y):
1
)
x
–
x
(
=
s
Deviation
dard
tan
S
1
–
n
)
x
–
x
(
s
Variance
2
2
2
–
å
å
=
n
1
)
x
–
x
(
=
s
Deviation
dard
tan
S
1
–
n
)
x
–
x
(
s
Variance
2
2
2
–
å
å
=
n
Variance s
x
–
x
)
n
S
dard Devia
tion s
=
x
–
x
)
2
2
2
=
å
å
(
tan
(
n
(
)
ò
+
+
4
1
2
7
6
2
dx
x
x
(
)
dx
e
x
ò
6
2
125
.
0
4
2
p
Que
s
tio
n
1
.
a
)
(
i)
(
4
+i
2
).(1+i
3
)
4(1+i3)+i2(1+i3)
4+i
12
+i2
–
6
=
-2+i
14
(ii)
(4+i2)/(1+i3)
numerator
4(1-i3)+i2(1-i3)
4-i12+i2-(i)
26
4-i
1
0
+6
10-i10
Denominator
1(1-i3)+i3(1-i3)
1-i3+i3-
9
(i)2
1+9=10
Quotient=
=1-i
b)
r=/z/=√(-2)2+1
42
=√
20
0
Argument of z
Tanθ=b/a
=14/-2
=-
7
Θ=
tan
-1(-7)
=-
8
1.87ᵒ×πᶜ/
18
0ᵒ
=πᶜ….4th quadrant
ϴ1=- πᶜ+πᶜ
ϴ2= πᶜ….2nd quadrant(principal arg)
Therefore,arg z= πᶜ+2πᶜn where n=intergers
Z==√200[cos ( πᶜ)+isin( πᶜ)]
c)
(4+i2) to polar form
R=/z/=√42+
22
=
√20
Arg z1
Tanθ1=2/4
Θ=tan-
11
/2
=26.6ᵒ×πᶜ/180ᵒ
=πᶜ
….1st quadrant
Arg z1= πᶜ+2πᶜn…..where n =interger
Z1=√20[cos(πᶜ)+isin(πᶜ)]
(1+i3) to polar form
R=/z/=√12+
32
=√10
Argz2
Tanθ2=3/1
Θ=tan-
13
=71.
5
6
ᵒ×πᶜ/180ᵒ
=πᶜ
Therefore z2=πᶜ+2πᶜn….n=integers
Z2=√10[cos(πᶜ)+isin(πᶜ)]
(i)
Product in polar representation
Z1.z2=√20[cos(πᶜ)+isin(πᶜ)].√10[cos(πᶜ)+isin(πᶜ)]
=√20.√10[cos(πᶜ+πᶜ)+isin(πᶜ+πᶜ)]
=
10√2[cos(πᶜ)+isin(πᶜ)]
(ii)
Quotient in polar representation
Z1/z2=[cos(πᶜ – πᶜ)+isin(πᶜ – πᶜ)]
= [cos(πᶜ )+isin((πᶜ)]
=
√2[cos(πᶜ )-isin((πᶜ)]
d(i)
10√2[cos(πᶜ)+isin(πᶜ)]
=10√2[-0.1
39
+i
0.9
9]
=-1.968+i14
(ii)
√2[cos(πᶜ )-isin((πᶜ)]
=√2[0.803-i0.7
19
]
=1.1
35
-i1.0
17
Qn 9
Z1=2+j10
Z2=j14
(i)
z=z1+z2 in series
=2+j10+j14
=(2+0)+j(10+14)
=2+j
24
(ii)
Z=z1+z2 in parallel
zE=
z1.z2=(2+j10).(0+ j14)
=2(0+j14)+j10(0+j14)
=0+j
28
+0+1
40
(j)2
=j28-140
=-140+j28
zE=×
numerator
=-140(2-j24)+j28(2-j24)
=-280+j
33
60
+j
56
-672(j)2
=-280+j
34
16
+672
=392+j3
41
6
Denominator
zE=2(2-j24)+j24(2-j24)
=4-j
48
+j48-
57
6j2
=4+576
=
58
0
zE=
=
=
0.6
76+j5.890
Question 2
The following data within the working area consists of measurements of resistor values from a production line.
For the sample as a set of ungrouped data, calculate (using at least 2 decimal places):
1. arithmetic mean
1. stan
dard
deviation
1. variance
The following data consists of measurements of resistor values from a production line:
51 .4 |
54 .1 |
53 .7 |
55 .4 |
53.1 |
5 3.5 |
54.0 |
||||||||||||||||||||||||
56.0 |
53.0 |
5 5.3 |
55.0 |
52 .8 |
55.9 |
|||||||||||||||||||||||||
50 .5 |
54.2 |
56.2 |
55.6 |
52.7 |
56.1 |
52.1 |
||||||||||||||||||||||||
5 0.2 |
54.7 |
|||||||||||||||||||||||||||||
55.1 |
54.8 |
56.5 |
||||||||||||||||||||||||||||
55.8 |
54.5 |
57.0 |
53.9 |
57.3 |
||||||||||||||||||||||||||
54.4 |
49 .6 |
51.6 |
53.2 |
5 4.6 |
||||||||||||||||||||||||||
5 6.4 |
50.9 |
51.8 |
||||||||||||||||||||||||||||
‘n’ |
No. |
Value (X) |
Mean |
(X – Mean) |
(X-Mean)2 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1 |
58.0413 |
0.1 15 87 30 16 |
0.013426556 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2 | 56 |
2.015873 016 |
4.06 37 44 016 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3 |
1.715873016 |
2.944220207 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4 |
1. 21 5873016 |
1. 47 8347191 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
5 |
2. 31 5873016 |
5. 36 3267826 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
6 |
0.515873016 |
0.26 61 24969 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7 |
0.015873016 |
0.000 25 1953 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8 |
-1.084126984 |
1.175331318 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
9 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
10 |
-3.884126984 |
15.086442 43 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
11 | 53 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
12 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13 |
0.315873016 |
0.0997757 62 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
14 |
-0.184126984 |
0.03390 27 46 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
15 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
16 |
-0. 38 4126984 |
0.14755354 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
17 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
18 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
19 |
20 | |||||||||||
21 |
2.115873016 |
4.476918619 |
|||||||||
22 |
0.615873016 |
0.379 29 9572 |
|||||||||
23 |
|||||||||||
24 |
0.415873016 |
0.172950365 |
|||||||||
25 |
-4.484126984 |
20.10739481 |
|||||||||
26 |
-3.184126984 |
10.13866465 |
|||||||||
27 | |||||||||||
28 |
1.315873016 |
1.731521794 |
|||||||||
29 | 55 |
0.915873016 |
0.838823381 |
||||||||
30 |
1.515873016 |
2.297871 |
|||||||||
31 | |||||||||||
32 | |||||||||||
33 | 57 |
2.915873016 |
8.5023154 45 |
||||||||
34 | |||||||||||
35 | 54 |
-0.084126984 |
0.007077349 |
||||||||
36 | |||||||||||
37 |
-0.984126984 |
0.96850 59 21 |
|||||||||
38 |
-1.284126984 |
1.648982111 |
|||||||||
39 |
-1.384126984 |
1.915807508 |
|||||||||
40 |
55.1
58.0413
1.015873016
1.031997984
56
58.0413
1.915873016
3.670569413
51.6
58.0413
-2.484126984
6.170886873
51.8
58.0413
-2.284126984
5.21723608
54
58.0413
-0.084126984
0.007077349
53.5
58.0413
-0.584126984
0.341204334
55.9
58.0413
1.815873016
3.29739481
56.1
58.0413
2.015873016
4.063744
016
52.7
58.0413
-1.384126984
1.915807508
54.8
58.0413
0.715873016
0.512474175
53.9
58.0413
-0.184126984
0.033902746
53.2
58.0413
-0.884126984
0.781680524
56.1
58.0413
2.015873016
4.063744016
51.8
58.0413
-2.284126984
5.21723608
54
58.0413
-0.084126984
0.007077349
52.8
58.0413
-1.284126984
1.648982111
52.1
58.0413
-1.984126984
3.936759889
52.1
58.0413
-1.984126984
3.936759889
56.5
58.0413
2.415873016
5.836442429
57.3
58.0413
3.215873016
10.34183925
54.6
58.0413
0.515873016
0.266124969
53.2
58.0413
-0.88413
0.781681
63
58.0413
3407.3
= Total X
54.95645
215.4841
Mean = Total X / ‘n’(ma
x
) =
‘n’ max – 1 (Y) =
Total (X-Mean)2 ……. let’s call this (Z)
Variance
Variance = (Total(X-Mean)2) / (‘n’ max -1)
= Z / Y =
3.920998
S
tan
dard Devia
tion
Standard
Deviation
= square-root of Variance
=
1.980151
Question 3
Using the data in Q2, we now need to arrange the data into groups so that we can “tally” the data accordingly.
Data Range |
Gap |
Freq. (F) |
Mid-Point (X) |
(F x X) |
Gap x F (Bar Area) |
(X-Mean)2 x F |
49.5 – 50.5 |
250 |
-4.84127 |
23.4379 |
117.1895 |
||
50.5 – 51.5 |
153 |
-3.84127 |
14.75536 |
44.26607 |
||
51.5 – 5 2.5 |
260 |
-2.84127 |
8.072815 |
40.36408 |
||
52.5 – 53.5 |
477 |
-1.84127 |
3.390275 |
30.51248 |
||
53.5 – 54.5 |
756 |
-0.84127 |
0.707735 |
9.908293 |
||
54.5 – 55.5 |
605 |
0.15873 |
0.025195 |
0.277147 |
||
55.5 – 56.5 |
840 |
1.15873 |
1.342655 |
20.13983 |
||
56.5 – 57.5 |
114 |
2.15873 |
4.660115 |
9.32023 |
||
Total F…Let’s call this (Y) |
3455 |
54.84127 |
271.97759 |
|||
Total (F x X) |
||||||
Mean = (Total (F x X)) / (Y) |
||||||
Total (X-Mean)2 x F ……. let’s call this (Z) |
Variance |
Variance = (Total(X-Mean)2 x f) / (Total F) = Z / Y 4.95936 |
|
Standard Deviation |
Standard Deviation = square-root of Variance =2.2269 |
Question 4
i)
Amplitude is the height of the wave
Periodic time is the time taken to complete one complete oscillation
Frequency refers to the number of oscillations made per second of time
In the above, for time T, the wave oscillates once, hence has a frequency of one.
V =
310
Sin (285t + 0.65)
X
y
0.2 | 0 | |
0.6 |
-310 |
|
0.9 | ||
1.2 | 310 |
ii)The wave form is leading
iii) The phase angle in degrees =0.65
iv)The amplitude is 310
v)Periodic time T is
wt=2π0
t=2850/(360*πc)
=1.58πr0
T =2αc /1.581 αc
=1.262 seconds
vi)Frequency
f=1/t
=1/1.263
=0.792hz
With t=1.263
Divide by 4 threfore we have
t=0,A=310
t=0.3, A=0
t=0.6, A=-310
t=0.9,A=0
t=1.2,A=310
hence the graph
Question 6
Differentiate:
1. y = (3×2 – 2x)7 ans:7(3×2-2x) 6(6x-2)
1. y = 6×3 .sin4x ans:18x2sin4x+24x3cos4x
(C)
y=5e^6x/x-8
Let u=5e^6x and t=6x
dt/dx=6
du/dt=5e^t
.: du/dx=du/dt*dt/dx
=5e^t.6
Let v=x-8
Dv/dx=1
By quotient rule
Dy/dx=(Vdu/dx-Udv/dx)/V^2
={(x-8).30e^6x – 5e^6x.1 }/(x-8)(x-8)
/ (x-8)^2
Question 7
(a)
(i) ∫ (4cos3ϴ+sin6 ϴ)dϴ
=4∫cos3ϴdϴ+∫sin6ϴdϴ
For 4∫cos3ϴdϴ
Let u-3ϴ
1/3du=dϴ
Substituting for dϴ
4∫cos u.1/3du
=4/3(sin u)+c….eqn(i)
For ∫sin6ϴdϴ
Let u-6ϴ
1/6du=dϴ
Substituting or dϴ
∫sin u.1/6du
=1/6∫(sin u)du
=1/6(-cos u)+c
=-1/6cos 6ϴ +c ….eqn(ii)
Adding eqn (i) and (ii)
=
(ii) ∫(2+cos0.83)dϴ
=2∫dϴ+∫cos0.83ϴ dϴ
For 2∫dϴ
=2ϴ+c…eqn(i)
For ∫cos0.83ϴ dϴ
=1/0.83sin0.83+c…eqn(ii)
Adding eqn (i) and (ii)
C(I)
y=3x^2+6
Values of x and y
When x=0 ; y=3(0)^2+6 =6
x=1 ; y=3(1)^2+6 =9
x=2; y=3(2)^2+6 =18
x=3 ; y=3(3)^2+6 =33
x=4 ; y=3(4)^2+6 =54
NB Using these values draw the required graph pliz
(ii)
A =∫
=
=3[1/3 +c
=3[64/3-1/3]
=63….(i)
6
=6[x+c]14
=6[4-1]
=18…eqn(ii)
Adding (i) and (ii)
=63+18= 81 sq units
Question 8
y=axn
Introducing logs
log y= log(axn )
loga+logxn
loga+nlogx this is the straight line form
Taking a tablex:a,0,1,2,…
Since y intercept=0,the equation becomes:
logy=nlogx+0
log1=nlog1
-0.3=0.3n
n=-1
0.9=loga+0.3(-1)
loga=1.2
gradient= n=-1
intersept= loga=1.2
sketching the graph:
n | x | y |
n logx |
antilog |
0.301 |
1.9999 |
|||
2.5 | 6.4 |
0.7959 |
||
5.3 |
1.4314 |
27.00023 |
||
3.5 | 4.6 |
2.1763 |
150.072 |
|
3.0103 |
1024.0001 |
Qn 9
Z1=2+j10
Z2=j14
(i)
z=z1+z2 in series
=2+j10+j14
=(2+0)+j(10+14)
=2+j24
(ii)
Z=z1+z2 in parallel
zE=
z1.z2=(2+j10).(0+ j14)
=2(0+j14)+j10(0+j14)
=0+j28+0+140(j)2
=j28-140
=-140+j28
zE=×
numerator
=-140(2-j24)+j28(2-j24)
=-280+j3360+j56-672(j)2
=-280+j3416+672
=392+j3416
Denominator
zE=2(2-j24)+j24(2-j24)
=4-j48+j48-576j2
=4+576
=580
zE=
=
=0.676+j5.890
0.2 0.60000000000000064 0.9 1.2 0 -310 0 310 0 0.30000000000000032 0.60000000000000064 0.9 1.2 1.5 310 0 -310 0 310 0 Y-Values 0.70000000000000062 1.8 2.6 2.7 3.2 0.8 1
)
x
–
x
(
=
s
Deviation
dard
tan
S
1
–
n
)
x
–
x
(
s
Variance
2
2
2
–
å
å
=
n
1
)
x
–
x
(
=
s
Deviation
dard
tan
S
1
–
n
)
x
–
x
(
s
Variance
2
2
2
–
å
å
=
n
Variance s
x
–
x
)
n
S
dard Devia
tion s
=
x
–
x
)
2
2
2
=
å
å
(
tan
(
n