Must be completely original work
read the article titled “How Barbie Lost her Groove,” by Nash and Duvall (2005). Compose a persuasive response that includes the following elements:
• Explain why Mattel’s managers were able to slowly change decision making over time and what kinds of cognitive errors contributed.
• Explain and comment on any factors related to organizational culture and innovation within Mattel’s setting that might have influenced the company to move in a more positive direction.
Your response should be two pages in length, not including the title page or reference page. You are required to cite at least one article All sources used must be referenced; paraphrased and quoted material must have accompanying in-text citations in the proper APA format
Surprise is what business
schools teach you to
avoid. Mattel’s research
.showed Barbie sales
falling as girls sought a
cooler doll. But Mattel
misjudged how, and
how fast, to move.
Learn from Mattel’s
mistakes in gathering—
and acting o n –
competitive intelligence.
BY KIM S. NASH
AND MELDUVALL
S E C T I O N
MATTEL BASE CA.
Headquarters: 333 Continental Blvd,, El Segundo, CA 902
45
Phone:(310)252-2000
Business: Makes and markets toys, including Barbie, Hot Wheels and Fisher-Price products.
Chief Executive Officer: Robert Eckert
Financials in 2004: S5.1 biliion in sates; $573 million in profits; net profit margin of 11%,
Challenge: To maintain Barbie’s place as the top-selling fashion doll in the world, and a cash
cow for Mattel, amid an onslaught of doll challengers,
BASELINE GOALS:
Generate 50% of sales outside the U,S,, up from 42% last year
Cut overhead costs as a percentage of sales to between 17% and 18%, down from
20% last year.
Increase operating margin as a percentage of sales to 20%, up from 14% last year.
Continue to decrease reliance on Wal-Mart, Toys R Us and Target, which combined
accounted for 46% of sales last year, down from 50% in 2002, in favor of smaller
retaifers and online sales.
Badnews came with Botoxed lips
and belly shirts^ln_J:he summejLaf.20i)L_loymak£rL
M.GA EQtertaiDmentintmduced YasmioJade, Sasha
andXIoe—the BxatzJbLe nevyJashlon d_oJis_canie in
a rainbow_of skj[i_toaes,_with_po’ilin.g, streetrsmart.
expressions. Afj:kaa-_American_Sas)_ a_wore.a_hip-_hQp_
knit cap and low-rise
38
No blonde hair, sugary smile or impossible figure, which for
four decades had defined Mattel’s iconic Barbie doll.
Girls who wanted attitude and ethnicity, not pert and pale,
bought $20 million worth of Bratz dolls in the first six
months they were out, and the doll line went on to win the
People’s Choice Toy ofthe Year award from the Toy Industry
Association.
MGA had hit a coveted demographic—girls age 6 to 12—
dead-on.
And yet, Mattel was uncharacteristically sluggish in
response. It would be a full 14 months before Mattel came
out with a Barbie offshoot, the My Scene dolls, that featured
the right mix of vivid makeup and edgy clothes that young
girls now craved.
The gap was long enough for Bratz to get a platform-
booted foot in the door and stay there. Unlike doll makers
before it, MGA was able to seize, and keep, market share.
Woridwide sales of Bratz reached S700 million last vear
—growing more than 45% over the previous 12 months,
while Barbie has stagnated at the same S1.5 billion level since
MGA introduced Bratz four years ago. Barbie’s share of the
fashion doll market has shrunk from 75% in 2000 to roughly
6 Q % today, says Sean McGowan, a financial analyst at Harris
Nesbitt Gerard in New York.
Today, new rivals—Janay and Friends from Integrity Toys,
Girls on the Go from Tolly Tots, and the Princess line from
Disney—are are all crowding into the doll aisle.
“It’s a business that’s more up for grabs than ever before,”
says Nancy Zwiers, who led worldwide marketing for Barbie
for five years, “Now that Bratz has made inroads, it’s become
apparent to other companies that they can, too,”
Mattel had the means to see it ail coming. Yet it was still
caught off guard.
The toymaker has a world class corporate intelligence
system that consists of teams of research scientists who
manipulate internal and third-party data with statistical
analysis and business intelligence software,
Pre-Bratz, they studied point of sale numbers from Wal-
Mart and other key retailers that showed zigzagging sales
for Barbie, The company also had “psychographic” data
about how girls of different ages play, drawn from Mattel’s
private focus groups and observations at its own Child Test
Center. That data suggested, for instance, that older girls—
age 8 to 12, known to marketers as “tweens”—were losing
interest in traditional Barbie, attracted instead to pop stars
in heavy makeup and trendy clothes.
Identifying threats eariy is the goal of a good business
intelligence program. But intelligence is only part of the
equation, says George Day, a marketing professor at tbe
University of Pennsylvania’s Wharton School who has
studied several industry giants that have missed cues from
the marketplace and subsequently suffered. You need sys-
tems—human and technological—to interpret data, and
then you need the wherewithal to act on it.
And that is where Mattel stumbled, according to con-
sultants, such as Day, and several former Mattel managers,
including Bruce Stein, who was chief operating officer and
president of Mattel Worldwide from 1997 to 1999. ‘Iwo fac-
tors blunted Mattel’s reaction, they say: internal challenges
that distracted management, and the company’s disinclina-
tion to change its key product. Mattel declined requests for
interviews, citing busy executive schedules.
Mattel did take tentative steps in 1999 and 2000 to
address twccns’ changing tastes with dolls such as Diva Starz,
but the moves didn’t click. Diva Starz’ bright facial features
and hipper clothing, for instance, stopped short ofthe new
provocative styles being blasted on TV and in magazines.
Mattel, says Jim Silver, an advisor to the Toy Industry
Association, a trade group, didn’t act swiftly and forcetijlly
enough to insulate its cash cow. The company, he says,
“thought [Bratz] would come and go,” just another challenger
without endurance. In 1991, for example, Mattel heat I lasbro’s
blonde, busty Miss America doll by introducing its own
American Beauty Queen Barhie. Likewise, Tyco Toys’ Little
Mermaid doll initially skyrocketed but eventually drowned
under a wave of mermaid Barbies from Mattel.
Now, Mattel finds itself fully engaged in a no-holds-
barred attempt to outmarket Bratz, incite new doll mer-
chandising trends and keep Barbie on her throne. Mattel
says it won’t let up.
It can’t.
Last year. Barbie, a perennial top seller, accounted for
30% of Mattel’s S5.1 billion in sales and an estimated 40% of
its $573 million profit. In the past 30 years, the Barbie
product line has produced approximately $24 billion in sales.
When Barhie is at risk, Mattel is at risk-
“This is what happens when you get blindsided,”
Day says.
The Mattel-MGA battle holds lessons for any company
trying to create an effective market intelligence system. Any
company can develop accurate research and sophisticated
technology to manipulate it. Stein points out: “The key is in
how data is interpreted and, secondly, management’s will-
ingness to respond to it.”
FEMALE INTUITION Well before the Bratz came hip-hop-
ping along, Mattel, and the toy industry in general, had
spotted a phenomenon called “age compression,” The most
recentgcnerations ot children are outgrowing traditional toys
sooner. Not so long ago, girls up to age 12 played with Barbies.
By 2000, tween girls were a generation weaned on Britney
Spears gyrating on M TV in a schoolgirl unifortn and crowned
her their own pop icon.
For growing-up-in-a-hurry tastes. Barbie had become a
haby toy; Mattel understood that older girls were losing
interest in its flagship doll —and that even little girls 6 and
7 years old were influenced hy their hig sisters.
But starting in 2000, Mattel was focusing on a set of
business challenges that included a transition at the top.
Former Kraft Foods chief executive Robert Eckert arrived
as its new chief executive, replacing Jill Barad, who as CEO
had pushed Barbie into new venues such as CD-ROMs, dig-
ital cameras and even NASCAR with a car-racing Barhie doll.
The company also was wrestling with the Barad-led
acquisition of educational software maker The Learning Co.,
a deal blamed for Mattel’s S431 million loss in 2000.
Figuring out how to regain profitability topped Eckert’s
to-do list.
“Mattel was vulnerable,” says Ronald Goodstein, asso-
ciate professor of marketing at Georgetown University in
Washington D.C, and a consultant for Mattel in the mid-
Robert Eckert
Chairman and Chief
Executive officer
INSIDERS
Matthew Bousquette
President Mattel Brands
Bousquette is Barbie’s real-
life Ken, ultimately responsi-
ble for figuring out how to
protect her against the Bratz
attack, Bousquette has intro-
duced a new line of My
Scene Barbie American Idol
dolls, signed tie-ins with teen
star Lindsay Lohan, and cre-
ated a new Barbie Live in
Fairytopia stage show to
regain Barbie’s glitz,
Thomas Debrowski
Executive vice President,
worldwide operations
Debrowski IS responsible for
reducing the time it takes to
move a new Barbie doll, such
as My Scene Lindsay Lohan,
from the design stage to Wal-
Mart’s shelves, Debrowski
was a colleague of Eckert at
Kraft Foods, where he
worked for 20 years.
Bob Normile
Senior Vice President
and General counsel
Normile is leading Mattel’s
efforts to try to crush Bratz
maker MGA Entertainment in
the courts, in April, Mattel filed
a suit against Carter Bryant, a
former Mattel designer, argu-
ing that he essentially stole
the company’s intellectual
property while still working at
Mattel, Bryant’s lawyer denies
that’s the case,
OUTSIDERS
“” ‘̂’nh Fckroth
Chief Information Officer
New Century
Financial Corp.
Eckroth, Mattel’s former CIO,
was new CEO Eckert’s first
hire, joining the company
in August 2000 from GE
Medical Systems, where he
was CIO. Eckroth dumped
Eckert joined Matte! in
May 2000 after a 23-year
career at Kraft Foods,
where he rose to the chief
executive’s position. He
was charged with trying to
rescue the company from
a disastrous decision to
purchase The Learning Co,
in May 1999 for $3,5 bii-
lion, and to reinvigorate
the all-important Barbie
brand. Former executives
say Mattel had the com-
petitive intelligence to
know girls were looking
for a doll with more atti-
tude than Barbie, but
Eckert and Mattel failed to
react quickly, Eckert is still
struggling to rekindle
Barbie’s glow,
many of the company’s cus-
tom-built applications in favor
of packaged software, such as
business intelligence tools
from Cognos and
Hyperion
Software, The underlying goal
was to speed the company’s
decision-making processes.
He left the company in June,
Bruce stein
Co-Founder
The Hatchery
Stein was second-in-com-
mand to former Mattel chief
executive Jill Barad, until he
left the company In a manage-
ment shakeup in March 1999.
Stein says there was reluc-
tance within the company to
mess with the Barbie fran-
chise, and that may have pre-
vented Mattel from creating a
Bratz-like product of its own.
Ivy Ross
Executive vice President,
Product Design and
Development
Gap Inc.
Ross, Mattel’s senior vice
president of worldwide girls
design until January 2004, is
credited with helping Mattel
establish an innovative prod-
uct development process—
an idea lab across from
Mattel’s El Segundo, Calif,,
headquarters. The lab creat-
ed ello, a construction set
aimed at the Barbie crowd,
Patricia Lewis
Adjunct Professor, Kogod
Schooi of Business
Amehcan university
Lewis has experienced the
Mattel marketing machine
from both sides—as director
of marketing for Barbie in the
1980s, and as head of market-
ing for Tyco’s Little Mermaid
dolls. She saw early signals
that some girls wanted an
edgier Barbie, but back then
the yearning wasn’t so seri-
ous. Barbie continued to rule.
1990s about best practices in product branding. And the
best time for a rival to strike with a new product, he adds, is
when a company is iooldng inward.
But former COO Stein says that even if Mattel executives
d mk lid
04. a
had focused on the intelligence that Barbie was vulnerable
and sounded a red alert, the company’s instinct not to mess
with the “hallowed ground” that was the highly profitable
Barbie line would have muted the response.
Although Mattel was willing to add accessories and
appendages—even a fish tail in 1992 to brush back Tyco’s
Little Mermaid—remaking Barbie with heavy makeup and
urban-chic outfits would have run up against years of policy
not to break the moid. “The culture of protecting Barbie
within Mattel is in their basic DNA,” Stein says.
Yet that reluctance to disturb Barbie—even with hard
evidence of a market shift—coupled with the internal dis-
tractions, left the product line, and by extension Mattel
itself, exposed.
In any industry that experiences tectonic shifts, it’s rare
to see companies react to the early warning signs, even
though they’re generally visible, says Wharton professor Day,
who has studied missteps at Mattel, Monsanto and other
industry giants. Long-running success makes managers at
large companies near-sighted, he says. Focused on a mainstay
product, they tend to ignore fresh information that diverges
from their accepted norm in three basic areas: marketplace
trends, the interests of target consumers, and threats from
competitors. For example:
• Monsanto, a leader in plant biotechnology, failed to recognize
a shift in marketplace mind-set in the late 1990s. Genetically
modified crops like canola and variations of corn and soy-
beans were promoted as healthier than natural versions
because of built-in benefits such as reduced saturated fat.
Farmers liked them tor their biocngincered protection
against pests. But when a British scientist said in 1998 that
genetically modified potatoes lowered the immune system
responses of rats, other medical authorities chimed in with
concerns about altered crops —and there soon followed a
firestorm of protests and European government edicts
against so-called “Frankenfoods.” Investors panicked.
Monsanto’s stock price lost 20% through 1999. The then-
S9.1 billion Monsanto was pushed into a merger with
Pharmacia Corp., largely for the value of its pharmaceutical
products.
• Blockbuster, the ubiquitous S6 biliion movie-rentai ctiain,
watched as Nctflix, an online movie-rental company,
grabbed 2.6 million customers in six years by eliminating
late fees and offering convenient service through the mail.
Cornered, Blockbuster in January decided to drop its late
fees—worth at least $400 million in revenue. Still,
Blockbuster said in financial documents that it had no
choice other than “to eliminate the most prevalent cus-
tomer complaints … and combat our com-
petitors’ use of this concept.”
• Microsoft, despite having a track record of spot-
ting and eliminating up-and-coming competitors, such as
WordPerfect and Novell, didn’t see Netscape
Communications coming with its Web browser
in 1994, It took Microsoft 10 months to release
its own browser— and even then, it was built on
a product licensed from another company.
Microsoft eventually clobbered Netscape, but
the upstart’s early, unexpected success forced
~— Microsoft to revamp its core products, incorpo-
rating Internet features into every one of them.
The list goes on, but Mattel didn’t have to be on it.
BARBIE LETS DOWN HER GUARD Since its inception in
1945, Mattel has been collecting market intelligence in
some form. While systems and procedures have been
upgraded, refined and enhanced, the basics have remained
the same.
Mattel’s market research department mixes and analyzes
data that comes fi”om the company’s own financial and inven-
tory systems, plus outside trend and demographic informa-
tion from at least five market research firms, including
ACNielsen; anecdotal research from focus groups; statistics
trom large consumer surveys; studies of children’s play pat-
terns; and sales figures from Wal-Mart and other giants.
Mattel also continuously collects aggregate sales at hun-
dreds of smaller retailers from market researcher NPD
Group, which gathers monthly sales figures on Mattel’s 107
product lines from store owners across the U.S. and Canada.
Mattel seeds its Oracle and IBM DB2 databases with data
on units sold, models, prices and dates, and analyzes past
and present sales patterns by brand, geography and other
categories —all to help forecast the fiiturc.
Analysts at Mattel can run database queries to spot sales
trends and conduct profit-and-loss studies by product.
Marketing managers like to measure the effectiveness ofTV
commercials by looking at
store-level sales data before
and after an ad campaign
begins, says Jennifer
Caveza, a former marketing
brand manager for Mattel’s
Fisher-Price division.
The numbers also arc analyzed in light of observational
data from outside researchers and Mattel’s own scientists,
including “mall intercept” interviews with girls and anec-
dotes about the competition collected from Mattei’s field
sales agents, who chat up buyers at the big retail chains.
Employees up and down the Mattel hierarchy are
expected to coiiect and discuss inteiligence, using e-mailed
updates, text reports filed at private Web sites, and monthly
meetings among brand marketers, market researchers, sales
managers and product designers.
Even the part-timers Mattel hires in the busy fall season
to drive trom store to store to set up merchandise and ensure
PROJECT PLANNER
HOW TO CALCULATE THE
COST OF A COMPETITIVE
INTELUGENCE SYSTEM
(SEE F O L b O U t i .
that stores are giving Mattel its negotiated shelf space file
daily reports to headquarters on what they find, via a secured
Weh site. CKO Eckert himself visits toy stores to eyehall
inventory levels of competing products.
Meanwhile, senior consumer research analysts with MBA
degrees conduct focus groups and interviews with girls, and
then speak as the “voice of the consumer” in presentations
to senior managers in the consumer research department.
Senior associates in the company’s corporate strategic plan-
ning group —positions that require not just MBAs but Ivy
League MBAs —assess competitors to determine whether to
try to beat them or buy them out. These senior associates,
according to job descriptions at Mattel’s Web site, also track
market shifts in toy categories such as fashion dolls, baby
dolls and ride-on vehicles to improve brand sales and profits,
and regularly prepare material for Eckert, chief financial
officer Kevin Farr and senior vice presidents.
One source of valuable hands-on information is visits by
Mattel researchers to children’s homes (with parents’ OK, of
course) to observe and understand play patterns.
For example, if researchers see Barbie dolls displayed on
a shelf above a girl’s dresser, even if the girls like them, it’s an
indication they don’t play with them regularly. They may even
be forgotten, says Zwiers, the former Barbie marketing exec-
utive, who founded Funosophy, a toy-brand consulting firm
in Long Beach, Calif, after leaving Mattel in 1999.
It’s more encouraging to see dolls lying on a pillow on
the bed, which indicates they are loved and held. Similarly,
dolls seen on the floor next to a box of doll clothes indicates
active play Seeing what else is in the room also tells a story
Mattel doesn’t want to fmd Barbie on the closet fioor and
Sasha and Yasmin Bratz on the pillow,
“Having girls teli you in their own words what they have
on their bed and why, and what they have stuffed away in
c/^tMig£iiC£ O u t r^mi
lival firms aren’t the only force that can take your company
lart.
movements, societal pressures, economic shifts and
technotogy breakthroughs can sneak up to derail even a longtime
market dominator, according to George Day, a marketing profes-
sor at the University of Pennsylvania’s Wharton School,
companies that have ruled their markets for years are espe-
cially at risk for overlooking “peripheral” forces that change the
familiar landscape, says Day, who co-wrote a forthcoming
Haivard Business Review article, “Scanning the Periphery,”
For example, Anheuser-Busch, SABMiller Brewing and Molson
Coors initially missed the growing popularity of microbrews. In
1984, beer drinkers sucked up small-batch beers from Samuel
Adams in Boston, Pyramid Breweries in Seattle and dozens of
others in between. The big brewers didn’t realize that 1980s
narcissism was a societal trend that would touch their business:
Beer drinkers in the all-about-me decade wanted a beverage as
distinctive as they thought they were.
When the number of microbreweries jumped from fewer than
50 in 1980 to 764 by 1996, the mass producers had to respond.
They bought stakes in small brewers or acquired them outright,
Anheuser-Busch, for example, paid $18 million in 1994 for 25% of
Redhook. Independent brewers continue to appear, with an esti-
mated 1,400 in business today
Toyota and Honda, on the other hand, skillfully considered how
U,S, environmental politics would touch them. The Japanese
automakers picked up on consumers’ increasing interest in
fuel-efficient hybrid cars, even before the Iraq war. Because they
pushed ahead building their Toyota Prius and Honda Insight
gas-electric cars, which get 60 miles per gallon, they were ready
when car buyers en masse wanted hybrids. General Motors and
Ford, meanwhile, continued making gas-gulping sport-utility
vehicles, in May, Standard & Poor’s said sinking SUV sales
helped convince it to downgrade the bonds of GM and Ford to
“junk” status.
As Day explains, “scanning the periphery” for growing threats
means actively looking for bad news—such as early backlash
against once-popular SUVs on Web sites such as idontcare-
aboutair.com—and then bringing it back to managers who may
not want to hear it.
One way to pick up on this intelligence is to designate an
executive to “collect the paranoia,” he advises. That person must
be senior enough to be able to see the impact of controversial
information and appraise it properly At chipmaker Intel Corp,, it
was Andy Grove, “It takes a particular kind of curious leadership
and processes and systems to be able to make sense of streams
of incoming data,” he says. In the 1980s, Grove heard and saw
that Japanese chip companies were swarming into memory chips
and decided to shift Intel into computer microprocessors, where
it eventually ruled the market.
Day also suggests that companies mount scouting parties of
two or three people from different departments to focus on one
question. An example: “What’s the worst thing that could happen
to our new product line this year?” Draw up a list, then go out
and look for signs of those things happening. And then, after
envisioning the worst, fantasize about the best.
For example, in the 1970s, Day says, scientists at AT&T’s Bell
Labs pretended the phone system was wrecked and that they
had to build a new one. What wild features and functions would
they put into it? Voice mail and voice-activated commands,
among many ideas, according to Day, Although the then-industry
giant didn’t know how to add them into its phone system imme-
diately, those concepts became ideal design points for future
projects. Today, we take them for granted.
Another technique: Look at the same data in new ways. Rather
than market share, a consumer products company might delve
into “wallet share,” Mattel’s Barbie may still be the No, 1 fashion
doti in terms of worldwide market share. But wallet share showed
that girls are spending increasing amounts of money on music
CDs, hip-hugging jeans and karaoke sets—indicating that Barbie’s
traditional customers are no longer dreaming about princesses,
but about becoming stars on Amehcan Idol. That intelligence
could be exploited to develop new products like American Idol
Barbie, which Mattel did this year. —K.S,N, AND M,D.
45
Mattel uses a wide range of
business intelligence tools and
services to understand and
guide the Barbie franchise.
APPLICATION
Financial
management
PRODUCT SUPPLIER
Oracle Pinancials Oracle
Financial planning
Human resources
Hyperion
PeopleSoft Human
Capital Management
PeopleSoft
Supply chain and
demand management
Procurement
Manugistics Supply
Chain and
Demand Management
Ariba Procurement
Manugistics
Transportation
management
Business intelligence
Market intelligence
Consumer spending
research
Store saies data
Kewtll-Ship Enterprise
Impromptu and
PoweiPlay, SPSS 13,
SAS Assist and
SAS insight
Retail Measurement,
AdReievance,
HomeScan
ConsumerTracker,
Custom Analytics
InfoScan
Kewill
Systems
Cognos,
SPSS, SAS
Institute
ACNielsen
Scarborough
Research
Information
Resources
Product strategy
research
Spectracom
Research
Spectracom
Corporate strategic
planning
Learning Map Root
Learning
Databases DB2, Oracle 9i.
SQL Server
IBM, Oracle,
Microsoft
JmCi fW5f UWt FiÊ CARCH
46
their toy box and why, can be so much more revealing than
asking a lot of canned questions,” she says.
Mattel can record such observations in content analysis
software, like Nvivo from QSR International of Australia,
which scans for keywords, analyzes their context and weights
them for importance. For example, each toy identified in an
intet^-iew can become a data point, as can the order in which
a girl names her favorites. Analyze enough of those inter-
views, and a toy company can see what girls think of its own
and its competitors’ products.
Alattel recently has added to its mix business-analysis prod-
ucts from Hyperion Software, Business Objects and otbers.
Analysts use these products to answer questions about a data
set, such as “How many Cali Girl Barbies did we sell in the first
nine months of last year, and how does that compare to the
sales level we’re ramping so far this year?” ‘ITie products also can
be used to produce executive “dashboards” that distill current
data on sales, profitability, operating costs and other metrics to
produce color-coded reports and alerts for senior managers.
Finally, Mattel casts a wide net to understand the overall
marketplace, so it can determine how societal trends, such
as i2-year-olds downloading music, might affect Barbie sales.
(Say, should Mattel approach Apple Computer about an iPod
cross-licensing deal?)
Mattel works with ACNielsen to track TV viewing habits
but also consumption of other media. For example, ACNielsen
monitors magazine readership statistics and Internet traffic to
better understand what girls do when they’re not buying toys.
Its NetRatings Internet analysis service functions a bit like
its TV ratings service. Families volunteer to have their online
activities tracked and recorded. When a member of a Nielsen
family sits down at the computer, a screen displays the names
of members of the household. If 8-year-oId Ariana clicks on
her name, NetRatings, with parental permission, tracks wher-
ever she goes online using software installed on the machine.
“We’ll tell them, ‘Here are the most popular shows for
8 year-old girls, here’s where they’re going online, here’s what
they’re reading and here’s where you should spend your
advertising dollars,'” says Corey Jeffery, a senior analyst at
Nielsen/NetRatings.
In response to the popularity of the American Idol T V
show and Web site among older girls, Mattel launched
American Idol Barbie in January.
The company also uses software tools from Cognos, SAS
Institute and SPSS to mix and match internal findings with
outside market or economic statistics.
Using Cognos analytic tools, for example, Mattel can track
the income level of families that buy traditional Barbie prod-
ucts or newer My Scene dolls by triangulating point-of-sale
data from different stores, such as Sears or Target or KR Toys,
with L.S. Census data on household incomes by ZIP code. It
can also determine, say, whether Internet traffic by geo-
graphical region is a leading or lagging indicator of sales for
Barbie. If click counts at Barbie.com’s American Idol section
soar in California in September, but show no similar spikes in
Florida, Mattel has a strong indication of where it needs
American Idol products on shelves and where to punch up
marketing before the holiday shopping season.
Wtth statistics tools from SAS and SPSS, Mattel’s consumer
research managers use regression analysis—modeling what-if
scenarios by figuring out the relationships among variables such
as disposable income, retail locations, weekly sales trends, price
fluctuations for the soft plastic of which Barbie is made in
Indonesian factories — to get a sense of fiiture trends. One kind
of question: “IfWal-Mart will allow My Scene dolls 12 feet more
shelf space in half of its 3,000 stores and we run a $3-ofif con-
sumer coupon in Nickelodeon magazine, how many points of
market share could we steal back from Bratz next quarter?”
The combined intelligence —numerical, observational and
aggregated information, from both outside research firms
and Mattel itself—helps Mattel’s strategic planning group fill
in what Mattel Brands president Matthew Bousquette calls
a “pyramid” of products aimed at girls of different ages and
tastes. Fairytopia Barbies, for instance, include dolls dressed
as fairies with light-up wings for little girls, and $1, bottles of
eau de toilette created by perfumer partner Puig Beauty and
Fashion Group, for older girls.
To get a feel for the future, Mattel designers create
sketches and foam-core prototypes to show to prospective
customers of different ages. Researchers then pose a simply
BRATZ ATTACK: BARBIE’S GLOW IS FADING BESIDE HIP NEW COMPETITOR
Barbie’s position as the queen of the doll market was thought unassailable, but then young giris 8 to 12 years old started to change. They
wanted edgier fashion dolls, and MGA hit the mark with Its Brau line. Mattel was slow to respond, and now Bratz threatens Barbie’s reign.
BASELINE: Overall U.S. toy sales
(does not include video games)
DOLLS CATEGORY
WORLDWIDE SALES
BASELINE: Mattel Girls
Category (includes Barbie,
My Scene, Cabbage Patcb Dolls
pllo and Polly Pocket)
MATTEL REVENUES
4 7
4 8
worded but critical question, says Patricia Lewis, former
director of marketing for Barbie in the mid-1980s and, later,
an executive at several competing toy companies.
“We would ask girls. Are you ready for this type of doll?'”
she recalls.
The answers reveal what girls view as a step beyond them
in maturity—and what they may reach for as they grow, she
says. Asking mothers the same thing gives a glimpse of the
support or resistance Mattel might encounter with new dolls.
“You do need to keep the moms in consideration,” she notes.
MATTEL GIVES IT SYSTEMS A MAKEOVER Gathering
and crunching all this data takes processing power. Mattel
has acknowledged in conference calls with financial
analysts that the hardware and software to support its
overall technology strategy needed help in the late 1990s
and early 2000s.
Mattel’s former chief information officer Joseph Eckroth,
who left in June to become CIO at real-estate investment
company New Century Financial Corp., has said that when
he arrived in 2000, he found that Mattel’s information sys-
tems were a decade old. There were 200 “fragmented” enter-
prise systems in manufacturing, inventory management and
transportation that didn’t easily share data. About 80% of
them were custom built, which was “a limiting factor on our
employees’ productivity and operating efficiency,” Eckroth
told financial analysts during an April 2002 conference call.
Dianne Douglas, formerly head of investor relations, has
been named Mattel’s new CIO.
A company that runs dozens of older applications built by
in-house programmers can find its technology
staff spending most of its time maintaining the
software and creating interfaces between any
new software and the older applications.
Corporate intelligence amounts to under-
standing your customers, sensing the compe-
tition’s next moves and knowing yourself. A
lack of reliable, timely data from a company’s
own accounting, supply chain and other core
applications impedes the fiow of information
to decision-makers.
Eckroth explained during the analyst call
how the inefficient technology had hurt
Mattel’s ability to compete: “[By] the time an event has
occurred—let’s say a change in demand for a specific
product—and the information is made available to the people
who need to react to it, it is often too late to take action to
effectively minimize a risk or maximize an opportunity.”
Early in 2002, Eckroth and Eckert launched an overhaul
of Mattel’s information systems. They wanted to make the
technology department more efficient with off-the-shelf
applications that needed less “manual intervention” by devel-
opers and support staff.
They also wanted to use technology to make the com-
pany as a whole more efficient. Focal points included
replacing 2,000 old personal computers; upgrading the dis-
jointed, customized enterprise software; and installing a data
warehouse for better decision-making.
“Every year we are incurring millions of dollars in lost
opportunities,” Eckroth said in 2002, “whether it’s … to
manage inventories better, reduce our cycle times, improve
our customer service or eliminate non-value-added work, all
because our systems infrastructure is not up to date.”
Eckroth steered Mattel toward packaged software. That
included buying Hyperion products, including Essbase, for
financial and research analysis in early 2002; Mattell also stan-
dardized on Oracle financial applications and databases in late
2002, and deployed Computer Associates’ ERWin data-mod-
eling tool. In 2003 and 2004, Mattel focused on rolling out
Oracle Einancials so its offices worldwide could see and report
unified budget and other financial data. Consistent data makes
forecasting more accurate, which in turn feeds better data into
internal intelligence reports.
But Mattel’s mistake related to Bratz wasn’t so much that
it wasn’t getting data; the information was processed and
delivered. What mattered was the company’s ineffective
response, says Ben Gilad, a competitive intelligence expert
and author oiEarly Warning., which outlines corporate intel-
ligence problems, including Mattel’s. Mattel, he says in an
interview, “completely missed on the early signals and it
caused them to lose the edge.”
In the period from 2000 to 2002 when MGA bore down,
financial data from Mattel’s accounting systems indicated
sales dips for Barbie. Mattel does not give dollar figures for
U.S. Barbie sales, but disclosed that domestic sales of the doll
line dropped 12% in 2001 and another 2% in 2002. Ultimately,
US. Barbie sales would fall 15% in 2003 and 15% last year. In
those four years, according to industry estimates, US. Barbie
sales dropped $500 million.
At the same time, the company had to deal with the
fallout from the $3.5 billion acquisition of The Learning Co.
OJO
MotM,
Even former CEO Barad’s impressive achievement of taking
Barbie from a $200 million brand when she started man-
aging the doll line in 1982, to Si.8 billion in 1997 —the year
she became chief executive—wasn’t enough to salvage her
job. She resigned in February 2000 under pressure from the
board, ending her i8-year career at Mattel.
After three months with no permanent leader, the com-
pany tapped the more conservative Eckert, a newcomer to
the toy business, to fix the mess at Mattel. On top of it all.
Toys R Us—which, with Wal-Mart, accounted for 40% of
Mattel’s sales in 2000—was pulling product orders as it
struggled to stay alive.
“Mattel was in a desperate time when I came on,” CIO
Eckroth told an audience at an Oracle customer meeting in
2003. “Bob needed to get the company back on track.”
To stop the bleeding from The Learning Co., Eckert
signed an unusual deal. He gave The Learning Co. to Gores
Technology Group, a turnaround firm in Los Angeles, in
ROADBLOCK: THE CHIEF EXECUTIVE OFFICER
r
THE OBSTACLE
Former Mattel executives agree that the company
had competitive intelligence pointing to a desire
among 8-to-12-year”Old girls for a bolder, hipper
Barbie—but Mattel failed to act. Ultimate responsibility
for protecting a company’s crown jewel lies in the hands
of the chief executive officer. But information-techtiology
managers can take steps to ensure their chief executives
get the right competitive intelligence, at tiie right time,
with the tools they need to interpret it correctly.
THE RESPONSE
Make sure your competitive intelligence system is
strong enough to pinpoint potential threats. Good com-
petitive inteiiigence systems will help companies become
aware of threats that may not even exist yet. That involves
having technology to identify and analyze current trends
and predict future consumer patterns, such as the desire of
every 8-year-old girl to be the next American Idol, Services
from companies like Scarborough Research measure the
lifestyles, shopping patterns, media behaviors and demo-
graphics of consumers to spot such trends at early stages.
Constantly evaluate your system to ensure it’s as
strong as it can be. The field of competitive intelligence is
changing rapidly, particularly as the Intemet plays an
increasing role in consumers’ shopping patterns. Firms like
VNU (which includes ACNielsen) can now triangulate store
purchases against television viewing, magazine readership
and Internet browsing, and recommend where companies
need to focus their advertising dollars. Technology managers
need to make sure they’re not missing out on a new Insight
that their competitors may be exploiting.
Establish an early warning system. Not only do execu-
tives need to knovtf what’s happening In their markets, but
they need to know it early enough to act, Ben Gilad, a com-
petitive intelligence consultant, says smart organizations set
up formal groups v f̂ith representatives throughout their
business units and ask them to pore over competitive data
and gather field reports. Those bodies report directly to the
CEO, There are any number of tools the groups can use to
instantly communicate perceived threats—from e-mails, to
instant messaging, to intranet and blog postings.
Be ready to justify the cost of upgrades. Today’s com-
petitive intelligence systems can be expensive. For
instance, ACNielsen gathers data on millions of retail pur-
chases, but its customer contracts run an average of
about $3.5 million. If a chief executive balks at those
types of fees, provide examples of how other companies
suffered after they were surprised by an up-and-coming
competitor, A company like Netflix might not exist today if
Blockbuster Video had done away with late fees several
years earlier. And a company like Mattel might not be
worrying about a bunch of Bratz, —M,D.
exchange tor “future consideration.” Mattel would get a
share of any profits Gores could coax from a revitalized
Learning Co,, or part of the proceeds if, as eventually hap-
pened. Gores sold it, Mattel got $21.3 million —a sHver of
what it paid. But Htkert had freed Mattel from the drag of
(rinding a money-losing software firm,
Eckert also forged a financial realignment plan in late
2000, to save $200 million over the period from 2001
through 2003, Mattel closed factories in Kentucky and
Mexico along with some international offices, and lopped
2,570 people from its 27,000 workforce.
Amid Mattel’s upheaval, Bratz’ mojo grew,
Zwiers, the former Barbie marketing leader, says her
alma mater needed to work harder to figure out where to
take Barbie,
“Leadership at the very top of Mattel had changed,” she
notes, “There was not the same understanding of the level
of ferocity needed to cut someone off immediately and not
let them gain a foothold.”
Former Barbie marketing director Lewis says Mattel
intelligence had picked up wisps of age compression from
internal surveys and external lifestyle studies even when she
was there in the mid-i9Sos.
Mattel did bring out dolls wearing flashier clothes, such
as its Diva Starz line. But with no competitor yet capitalizing
on those concepts —and Barbie’s sales still growing—Mattel
didn’t push this new direction.
“Mattel did not have an incentive to turn the fashion-
doll aesthetic upside down,” Zwiers says, “Only someone
trying to unseat Barbie could do that.”
When Bratz arrived next to Diva Starz on toy-store
shelves, the Mattel dolls’ rounded heads and muted makeup
looked immature. Diva Starz are still available but have been
repositioned for “transitional” girls age 6 to 8, rather than
tweens.
In addition to the My Scene dolls, in June 2003 Mattel
tried to further dilute the market for trendy dolls, adding
an even edgier line called Flavas. But the dolls, meant to
evoke the hip-hop music scene, incensed some parents who
felt Mattel had turned Barbie into a tart. By early 2004,
Eckert killed the product. “Every year we have products that
work well and products that don’t and simply said, Elavas
was one of those that didn’t work well,” he told financial
analysts in a Eebniary 2003 conference call.
Mattel acknowledges that today few segments of its
Barbie product line are doing well—mostly those intended
for girls under age ?, Other Barbie versions, including those
competing against Bratz, “need more work,” Eckert acknowl-
edged in an April conference call with financial analysts. He
vowed to continue “rebuilding relevance with girls.”
The lesson? A giant that rules its market can’t get com-
fortable, says Day ofthe Wharton School. Instead, he says,
it should create crisis internally, to teach itself how to
respond when trouble does appear.
If Mattel, as part of its intelligence operation, had set
up an internal “attack team” to strategize about how it
would compete with itself, he says, it would have known to
move faster when MGA first launched Bratz. “Ask yourself
what have been your blind spots in the past and what’s
happening there now,” he says (see sidebar, p. 45). 49
GOTCHA! ANALYZING TEXT MINING TOOLS
Human analysts, not computers, bear most of the responsibility for spotting competitive threats, trends and opportuni-
ties. Technologists can arm them with “text mining” software that analyzes news stories, patent filings, customer-service notes
and the like to find mentions of a company and its products and activities. The tools try to determine whether a company is seen
in a negative or positive light, and to spot themes that might provide insight into what customers want the company to do next
PROBLEM: The goal of discovering unexpected
patterns through text mining can be elusive.
RESOLUTiotsi Take the time to properly define what
you’re looking for. Text mining aims to identify specific
entities, such as people or customers, related facts and
attributes, and events such as product launches or compa-
ny acquisitions. But doing it effectively often requires a
substantial investment in defining synonymous terms, such
as scientific versus trade names for a given drug, or estab-
lishing relationships between products and companies or
between parent companies and their subsidiaries or acqui-
sitions {the startup that’s suddenly relevant because it’s
been bought by your biggest competitor).
The “machine learning” capabilities of text mining soft-
ware can accelerate this process by guessing at relation-
ships—for example, by using computational linguistics to
identify the relationship between a company and an action
it has taken, sucfi as acquiring another firm.
PROBLEM: Some forms of text mining, such as “sen-
timent mining,” which focuses on identifying positive
or negative comments posted online about your
company or its products, don’t work equally well.
RESOLUTtON: Know the limits of the tools you choose to
use. Sentiment mining vendors such as intelliseek, with its
BrandPulse suite and B!ogPulse product, provide a way of
continuously monitoring the online buzz about your com-
pany and its products. If you’re Apple Computer, it’s likely
that a significant slice of your customer base is buzzing
about the latest Mac or iPod product. But what if you’re
Mattel? Are there enough young girls keeping blogs for
BlogPufse to discover meaningful trends in attitudes
toward Barbie?
PROBLEM: The analysis often produces too much
information for users to easily digest.
RESOLUTION: Provide analysts with a toolkit that contain
both visualization software, such as mapping packages, and
spreadsheet-like displays. For example, MicroPatent’s
Aureka ThemeScape, an analysis tool for patent data, will
display the intersections between, say, a new chemical and
its applications as if they were elements in a topographic
map. Mountain peaks represent clusters of similar applica-
tions; isolated applications appear as islands.
PROBLEM: computer analysis does not equal insight.
RESOLUTION: Don’t just read the data, study it and
talk about it. Leaders have a tendency to do what
worked for them in the past, ignoring changes that
render that strategy obsolete, according to competitive
intelligence expert Ben Gilad, author of the book
Business Blindspots. “Blind spots are immune to any
text mining or visualization tool on the market,” he says.
Gilad advises firms that want to avoid this pitfall to
establish an early warning system where executives
and analysts meet twice a year to discuss what he
terms “faint signals” of customer dissatisfaction and
competitive threats, -DAVID F. CARR
52
BARBIE FIGHTS BACK Mattel is fighting back against
-fiBratz not only cheek-to-jowl on store shelves, but in court.
Several Mattel veterans now work at MGA and are
involved in legal battles. Mattel is suing product designer
Carter Bryant, a former Mattel doll designer, for allegedly
spilling confidential information and taking Mattel ideas
with him to MGA.Also included in the suit are lo unnamed
MGA employees accused of helping Bryant breach fiduciary,
loyalty and confidentiality duties to Mattel.
Bryant has denied all charges and is countersuing Mattel
for allegedly forcing him to sign an overly broad employ-
ment agreement when he started work there. Bryant says,
for example, that the contract prohibited him from revealing
routine information such as the identities of Mattel
employees and their skills and knowledge.
In April, MGA sued Mattel, accusing it of acts of unfair
competition and intellectual property infringement related
to the resemblance between My Scene and Bratz dolls. All
cases are pending in US. District Court in Los Angeles.
Meanwhile, Mattel has swamped toy stores with new doll
products — Barbies that look like the stars on American Idol and
19 year-old movie actress Lindsay Lohan (J-krh’e: Fully Loaded),
as well as Fashion Fever Barbie dolls endorsed by Hilary Duff,
who stars In Disney’s popular Lizzie McGuire TV show about
middle school girls. In June, Mattel announced Barbie would
hit the road, with an actress touring next year in a live show
hased on Barbie’s Fairytopia incarnation, which sells well
among girls 3 to 5. The My Scene dolls have many new acces-
sories, including a limousine with hot tub. ‘lTiis fall. My Scene
Goes HoUywood, a direct-to video animated movie, is due out.
Still, retailers typically give My Scene less shelf space than
Bratz. At albys R Us in Calgary, Alberta, for example, My Scene
claimed 36 feet to Bratz’ 52 feet. Tbe disparity was greater at a
Wai Mart in Peekskill, N.Y., where My Scene got 16 feet to
Bratz’ 60 feet. Barbie had more real estate than cither doll line
at both locations, but Barbie sales still languish. Retailers
measure sales and profits per square and linear foot, and gen-
erally give more space to products that generate higher margins.
Mattel’s financial picture is better than when Eckert arrived
in 2000, yet five years later he still struggles with Barbie. Last
month, Mattel reported that Barbie sales dropped 4% world-
wide for the second quarter. “We still have a lot of work to do
on Barbie,” he said last month. He noted that he has tried to
make Mattel less reliant on any single brand, but that Barbie
continues to be “an important, sizable business for us.”
Meanwhile, in its latest annual report, Mattel vows its
No. I goal is “invigoration ofthe Barbie brand.”
Yasmin,Jade, Sasha and Cloe don’t look worried. <